| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnn0z.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgnn0z.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgnn0z.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 6 | 1 3 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →   0   ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 8 |  | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  {  0  } ) )  =  seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  {  0  } ) ) | 
						
							| 9 | 1 7 2 8 | mulgnn | ⊢ ( ( 𝑁  ∈  ℕ  ∧   0   ∈  𝐵 )  →  ( 𝑁  ·   0  )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  {  0  } ) ) ‘ 𝑁 ) ) | 
						
							| 10 | 5 6 9 | syl2anr | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ·   0  )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  {  0  } ) ) ‘ 𝑁 ) ) | 
						
							| 11 | 1 7 3 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧   0   ∈  𝐵 )  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 12 | 6 11 | mpdan | ⊢ ( 𝐺  ∈  Mnd  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ )  →  (  0  ( +g ‘ 𝐺 )  0  )  =   0  ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 15 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 16 | 14 15 | eleqtrdi | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ )  →   0   ∈  𝐵 ) | 
						
							| 18 |  | elfznn | ⊢ ( 𝑥  ∈  ( 1 ... 𝑁 )  →  𝑥  ∈  ℕ ) | 
						
							| 19 |  | fvconst2g | ⊢ ( (  0   ∈  𝐵  ∧  𝑥  ∈  ℕ )  →  ( ( ℕ  ×  {  0  } ) ‘ 𝑥 )  =   0  ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ )  ∧  𝑥  ∈  ( 1 ... 𝑁 ) )  →  ( ( ℕ  ×  {  0  } ) ‘ 𝑥 )  =   0  ) | 
						
							| 21 | 13 16 20 | seqid3 | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ )  →  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  {  0  } ) ) ‘ 𝑁 )  =   0  ) | 
						
							| 22 | 10 21 | eqtrd | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ·   0  )  =   0  ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑁  =  0  →  ( 𝑁  ·   0  )  =  ( 0  ·   0  ) ) | 
						
							| 24 | 1 3 2 | mulg0 | ⊢ (  0   ∈  𝐵  →  ( 0  ·   0  )  =   0  ) | 
						
							| 25 | 6 24 | syl | ⊢ ( 𝐺  ∈  Mnd  →  ( 0  ·   0  )  =   0  ) | 
						
							| 26 | 23 25 | sylan9eqr | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  =  0 )  →  ( 𝑁  ·   0  )  =   0  ) | 
						
							| 27 | 22 26 | jaodan | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) )  →  ( 𝑁  ·   0  )  =   0  ) | 
						
							| 28 | 4 27 | sylan2b | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ·   0  )  =   0  ) |