Metamath Proof Explorer


Theorem mulgnn0z

Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgnn0z.b 𝐵 = ( Base ‘ 𝐺 )
mulgnn0z.t · = ( .g𝐺 )
mulgnn0z.o 0 = ( 0g𝐺 )
Assertion mulgnn0z ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 0 ) = 0 )

Proof

Step Hyp Ref Expression
1 mulgnn0z.b 𝐵 = ( Base ‘ 𝐺 )
2 mulgnn0z.t · = ( .g𝐺 )
3 mulgnn0z.o 0 = ( 0g𝐺 )
4 elnn0 ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) )
5 id ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ )
6 1 3 mndidcl ( 𝐺 ∈ Mnd → 0𝐵 )
7 eqid ( +g𝐺 ) = ( +g𝐺 )
8 eqid seq 1 ( ( +g𝐺 ) , ( ℕ × { 0 } ) ) = seq 1 ( ( +g𝐺 ) , ( ℕ × { 0 } ) )
9 1 7 2 8 mulgnn ( ( 𝑁 ∈ ℕ ∧ 0𝐵 ) → ( 𝑁 · 0 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) )
10 5 6 9 syl2anr ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 0 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) )
11 1 7 3 mndlid ( ( 𝐺 ∈ Mnd ∧ 0𝐵 ) → ( 0 ( +g𝐺 ) 0 ) = 0 )
12 6 11 mpdan ( 𝐺 ∈ Mnd → ( 0 ( +g𝐺 ) 0 ) = 0 )
13 12 adantr ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 0 ( +g𝐺 ) 0 ) = 0 )
14 simpr ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ )
15 nnuz ℕ = ( ℤ ‘ 1 )
16 14 15 eleqtrdi ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ( ℤ ‘ 1 ) )
17 6 adantr ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 0𝐵 )
18 elfznn ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ )
19 fvconst2g ( ( 0𝐵𝑥 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑥 ) = 0 )
20 17 18 19 syl2an ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 0 } ) ‘ 𝑥 ) = 0 )
21 13 16 20 seqid3 ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) = 0 )
22 10 21 eqtrd ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 0 ) = 0 )
23 oveq1 ( 𝑁 = 0 → ( 𝑁 · 0 ) = ( 0 · 0 ) )
24 1 3 2 mulg0 ( 0𝐵 → ( 0 · 0 ) = 0 )
25 6 24 syl ( 𝐺 ∈ Mnd → ( 0 · 0 ) = 0 )
26 23 25 sylan9eqr ( ( 𝐺 ∈ Mnd ∧ 𝑁 = 0 ) → ( 𝑁 · 0 ) = 0 )
27 22 26 jaodan ( ( 𝐺 ∈ Mnd ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝑁 · 0 ) = 0 )
28 4 27 sylan2b ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 0 ) = 0 )