Database BASIC ALGEBRAIC STRUCTURES Groups Group multiple operation mulgnncl  
				
		 
		
			
		 
		Description:   Closure of the group multiple (exponentiation) operation for a positive
       multiplier in a magma.  (Contributed by Mario Carneiro , 11-Dec-2014) 
       (Revised by AV , 29-Aug-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						mulgnncl.b ⊢  𝐵   =  ( Base ‘ 𝐺  )  
					
						mulgnncl.t ⊢   ·    =  ( .g  ‘ 𝐺  )  
				
					Assertion 
					mulgnncl ⊢   ( ( 𝐺   ∈  Mgm  ∧  𝑁   ∈  ℕ  ∧  𝑋   ∈  𝐵  )  →  ( 𝑁   ·   𝑋  )  ∈  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							mulgnncl.b ⊢  𝐵   =  ( Base ‘ 𝐺  )  
						
							2 
								
							 
							mulgnncl.t ⊢   ·    =  ( .g  ‘ 𝐺  )  
						
							3 
								
							 
							eqid ⊢  ( +g  ‘ 𝐺  )  =  ( +g  ‘ 𝐺  )  
						
							4 
								
							 
							id ⊢  ( 𝐺   ∈  Mgm  →  𝐺   ∈  Mgm )  
						
							5 
								
							 
							ssidd ⊢  ( 𝐺   ∈  Mgm  →  𝐵   ⊆  𝐵  )  
						
							6 
								1  3 
							 
							mgmcl ⊢  ( ( 𝐺   ∈  Mgm  ∧  𝑥   ∈  𝐵   ∧  𝑦   ∈  𝐵  )  →  ( 𝑥  ( +g  ‘ 𝐺  ) 𝑦  )  ∈  𝐵  )  
						
							7 
								1  2  3  4  5  6 
							 
							mulgnnsubcl ⊢  ( ( 𝐺   ∈  Mgm  ∧  𝑁   ∈  ℕ  ∧  𝑋   ∈  𝐵  )  →  ( 𝑁   ·   𝑋  )  ∈  𝐵  )