Database
BASIC ALGEBRAIC STRUCTURES
Groups
Group multiple operation
mulgnncl
Metamath Proof Explorer
Description: Closure of the group multiple (exponentiation) operation for a positive
multiplier in a magma. (Contributed by Mario Carneiro , 11-Dec-2014)
(Revised by AV , 29-Aug-2021)
Ref
Expression
Hypotheses
mulgnncl.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
mulgnncl.t
⊢ · = ( .g ‘ 𝐺 )
Assertion
mulgnncl
⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
mulgnncl.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
2
mulgnncl.t
⊢ · = ( .g ‘ 𝐺 )
3
eqid
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 )
4
id
⊢ ( 𝐺 ∈ Mgm → 𝐺 ∈ Mgm )
5
ssidd
⊢ ( 𝐺 ∈ Mgm → 𝐵 ⊆ 𝐵 )
6
1 3
mgmcl
⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 )
7
1 2 3 4 5 6
mulgnnsubcl
⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 )