Metamath Proof Explorer


Theorem mulgnncl

Description: Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014) (Revised by AV, 29-Aug-2021)

Ref Expression
Hypotheses mulgnncl.b 𝐵 = ( Base ‘ 𝐺 )
mulgnncl.t · = ( .g𝐺 )
Assertion mulgnncl ( ( 𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 mulgnncl.b 𝐵 = ( Base ‘ 𝐺 )
2 mulgnncl.t · = ( .g𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 id ( 𝐺 ∈ Mgm → 𝐺 ∈ Mgm )
5 ssidd ( 𝐺 ∈ Mgm → 𝐵𝐵 )
6 1 3 mgmcl ( ( 𝐺 ∈ Mgm ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
7 1 2 3 4 5 6 mulgnnsubcl ( ( 𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 )