Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnndir.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgnndir.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgnndir.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
sgrpmgm |
⊢ ( 𝐺 ∈ Smgrp → 𝐺 ∈ Mgm ) |
5 |
1 3
|
mgmcl |
⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
6 |
4 5
|
syl3an1 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
7 |
6
|
3expb |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
8 |
7
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
9 |
1 3
|
sgrpass |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
10 |
9
|
adantlr |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
11 |
|
simpr2 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ℕ ) |
12 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
13 |
11 12
|
eleqtrdi |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
14 |
|
simpr1 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℕ ) |
15 |
14
|
nnzd |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℤ ) |
16 |
|
eluzadd |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ℤ ) → ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) |
17 |
13 15 16
|
syl2anc |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑁 + 𝑀 ) ∈ ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) |
18 |
14
|
nncnd |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℂ ) |
19 |
11
|
nncnd |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ℂ ) |
20 |
18 19
|
addcomd |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
22 |
|
addcom |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 + 1 ) = ( 1 + 𝑀 ) ) |
23 |
18 21 22
|
sylancl |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 + 1 ) = ( 1 + 𝑀 ) ) |
24 |
23
|
fveq2d |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ ( 1 + 𝑀 ) ) ) |
25 |
17 20 24
|
3eltr4d |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 + 𝑁 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
26 |
14 12
|
eleqtrdi |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
27 |
|
simpr3 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
28 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 𝑥 ∈ ℕ ) |
29 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
30 |
27 28 29
|
syl2an |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑥 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
31 |
27
|
adantr |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑥 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → 𝑋 ∈ 𝐵 ) |
32 |
30 31
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑥 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) ∈ 𝐵 ) |
33 |
8 10 25 26 32
|
seqsplit |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑀 + 𝑁 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑀 + 𝑁 ) ) ) ) |
34 |
|
nnaddcl |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
35 |
14 11 34
|
syl2anc |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 + 𝑁 ) ∈ ℕ ) |
36 |
|
eqid |
⊢ seq 1 ( + , ( ℕ × { 𝑋 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) |
37 |
1 3 2 36
|
mulgnn |
⊢ ( ( ( 𝑀 + 𝑁 ) ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑀 + 𝑁 ) ) ) |
38 |
35 27 37
|
syl2anc |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑀 + 𝑁 ) ) ) |
39 |
1 3 2 36
|
mulgnn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) ) |
40 |
14 27 39
|
syl2anc |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) ) |
41 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) |
42 |
27 41 29
|
syl2an |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
43 |
27
|
adantr |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ 𝐵 ) |
44 |
|
nnaddcl |
⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑥 + 𝑀 ) ∈ ℕ ) |
45 |
41 14 44
|
syl2anr |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 + 𝑀 ) ∈ ℕ ) |
46 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑥 + 𝑀 ) ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ ( 𝑥 + 𝑀 ) ) = 𝑋 ) |
47 |
43 45 46
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ ( 𝑥 + 𝑀 ) ) = 𝑋 ) |
48 |
42 47
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = ( ( ℕ × { 𝑋 } ) ‘ ( 𝑥 + 𝑀 ) ) ) |
49 |
13 15 48
|
seqshft2 |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( seq ( 1 + 𝑀 ) ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 𝑀 ) ) ) |
50 |
1 3 2 36
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
51 |
11 27 50
|
syl2anc |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
52 |
23
|
seqeq1d |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → seq ( 𝑀 + 1 ) ( + , ( ℕ × { 𝑋 } ) ) = seq ( 1 + 𝑀 ) ( + , ( ℕ × { 𝑋 } ) ) ) |
53 |
52 20
|
fveq12d |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( seq ( 𝑀 + 1 ) ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑀 + 𝑁 ) ) = ( seq ( 1 + 𝑀 ) ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 𝑀 ) ) ) |
54 |
49 51 53
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑁 · 𝑋 ) = ( seq ( 𝑀 + 1 ) ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑀 + 𝑁 ) ) ) |
55 |
40 54
|
oveq12d |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑀 ) + ( seq ( 𝑀 + 1 ) ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑀 + 𝑁 ) ) ) ) |
56 |
33 38 55
|
3eqtr4d |
⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |