| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnngsum.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgnngsum.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgnngsum.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 1 ... 𝑁 )  ↦  𝑋 ) | 
						
							| 4 |  | elnnuz | ⊢ ( 𝑁  ∈  ℕ  ↔  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 5 | 4 | biimpi | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 7 | 3 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝐹  =  ( 𝑥  ∈  ( 1 ... 𝑁 )  ↦  𝑋 ) ) | 
						
							| 8 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  ∧  𝑥  =  𝑖 )  →  𝑋  =  𝑋 ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑖  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∈  𝐵 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 12 | 7 8 9 11 | fvmptd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑖 )  =  𝑋 ) | 
						
							| 13 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... 𝑁 )  →  𝑖  ∈  ℕ ) | 
						
							| 14 |  | fvconst2g | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑖  ∈  ℕ )  →  ( ( ℕ  ×  { 𝑋 } ) ‘ 𝑖 )  =  𝑋 ) | 
						
							| 15 | 10 13 14 | syl2an | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( ( ℕ  ×  { 𝑋 } ) ‘ 𝑖 )  =  𝑋 ) | 
						
							| 16 | 12 15 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ 𝑖 )  =  ( ( ℕ  ×  { 𝑋 } ) ‘ 𝑖 ) ) | 
						
							| 17 | 6 16 | seqfveq | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  ( seq 1 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑁 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 18 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 19 |  | elfvex | ⊢ ( 𝑋  ∈  ( Base ‘ 𝐺 )  →  𝐺  ∈  V ) | 
						
							| 20 | 19 1 | eleq2s | ⊢ ( 𝑋  ∈  𝐵  →  𝐺  ∈  V ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  𝐺  ∈  V ) | 
						
							| 22 | 10 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  ( 1 ... 𝑁 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 23 | 22 3 | fmptd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐵 ) | 
						
							| 24 | 1 18 21 6 23 | gsumval2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  ( 𝐺  Σg  𝐹 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 25 |  | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) | 
						
							| 26 | 1 18 2 25 | mulgnn | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ·  𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 27 | 17 24 26 | 3eqtr4rd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ·  𝑋 )  =  ( 𝐺  Σg  𝐹 ) ) |