Metamath Proof Explorer


Theorem mulgnngsum

Description: Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses mulgnngsum.b 𝐵 = ( Base ‘ 𝐺 )
mulgnngsum.t · = ( .g𝐺 )
mulgnngsum.f 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 )
Assertion mulgnngsum ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) )

Proof

Step Hyp Ref Expression
1 mulgnngsum.b 𝐵 = ( Base ‘ 𝐺 )
2 mulgnngsum.t · = ( .g𝐺 )
3 mulgnngsum.f 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 )
4 elnnuz ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ ‘ 1 ) )
5 4 biimpi ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ ‘ 1 ) )
6 5 adantr ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → 𝑁 ∈ ( ℤ ‘ 1 ) )
7 3 a1i ( ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) )
8 eqidd ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 = 𝑖 ) → 𝑋 = 𝑋 )
9 simpr ( ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑖 ∈ ( 1 ... 𝑁 ) )
10 simpr ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → 𝑋𝐵 )
11 10 adantr ( ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑋𝐵 )
12 7 8 9 11 fvmptd ( ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹𝑖 ) = 𝑋 )
13 elfznn ( 𝑖 ∈ ( 1 ... 𝑁 ) → 𝑖 ∈ ℕ )
14 fvconst2g ( ( 𝑋𝐵𝑖 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) = 𝑋 )
15 10 13 14 syl2an ( ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) = 𝑋 )
16 12 15 eqtr4d ( ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹𝑖 ) = ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) )
17 6 16 seqfveq ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( seq 1 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) )
18 eqid ( +g𝐺 ) = ( +g𝐺 )
19 elfvex ( 𝑋 ∈ ( Base ‘ 𝐺 ) → 𝐺 ∈ V )
20 19 1 eleq2s ( 𝑋𝐵𝐺 ∈ V )
21 20 adantl ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → 𝐺 ∈ V )
22 10 adantr ( ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → 𝑋𝐵 )
23 22 3 fmptd ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐵 )
24 1 18 21 6 23 gsumval2 ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g𝐺 ) , 𝐹 ) ‘ 𝑁 ) )
25 eqid seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) )
26 1 18 2 25 mulgnn ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) )
27 17 24 26 3eqtr4rd ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) )