Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnngsum.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgnngsum.t |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgnngsum.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) |
4 |
|
elnnuz |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
5 |
4
|
biimpi |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
7 |
3
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) ) |
8 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑥 = 𝑖 ) → 𝑋 = 𝑋 ) |
9 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) |
10 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ 𝐵 ) |
12 |
7 8 9 11
|
fvmptd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) = 𝑋 ) |
13 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) → 𝑖 ∈ ℕ ) |
14 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑖 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) = 𝑋 ) |
15 |
10 13 14
|
syl2an |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) = 𝑋 ) |
16 |
12 15
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑖 ) = ( ( ℕ × { 𝑋 } ) ‘ 𝑖 ) ) |
17 |
6 16
|
seqfveq |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
19 |
|
elfvex |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → 𝐺 ∈ V ) |
20 |
19 1
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐵 → 𝐺 ∈ V ) |
21 |
20
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝐺 ∈ V ) |
22 |
10
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ 𝐵 ) |
23 |
22 3
|
fmptd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ 𝐵 ) |
24 |
1 18 21 6 23
|
gsumval2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , 𝐹 ) ‘ 𝑁 ) ) |
25 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) |
26 |
1 18 2 25
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
27 |
17 24 26
|
3eqtr4rd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) |