Step |
Hyp |
Ref |
Expression |
1 |
|
mulg1.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulg1.m |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
mulgnnp1.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℕ ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
4 5
|
eleqtrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
7 |
|
seqp1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) ) ) |
9 |
|
id |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) |
10 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
11 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 + 1 ) ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) = 𝑋 ) |
12 |
9 10 11
|
syl2anr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) = 𝑋 ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + ( ( ℕ × { 𝑋 } ) ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + 𝑋 ) ) |
14 |
8 13
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + 𝑋 ) ) |
15 |
|
eqid |
⊢ seq 1 ( + , ( ℕ × { 𝑋 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) |
16 |
1 3 2 15
|
mulgnn |
⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) ) |
17 |
10 16
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ ( 𝑁 + 1 ) ) ) |
18 |
1 3 2 15
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
19 |
18
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 · 𝑋 ) + 𝑋 ) = ( ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) + 𝑋 ) ) |
20 |
14 17 19
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 + 1 ) · 𝑋 ) = ( ( 𝑁 · 𝑋 ) + 𝑋 ) ) |