| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnnsubcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgnnsubcl.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulgnnsubcl.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
mulgnnsubcl.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
| 5 |
|
mulgnnsubcl.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 6 |
|
mulgnnsubcl.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 7 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℕ ) |
| 8 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 9 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
| 10 |
8 9
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 11 |
|
eqid |
⊢ seq 1 ( + , ( ℕ × { 𝑋 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) |
| 12 |
1 3 2 11
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 13 |
7 10 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 14 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 15 |
7 14
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 16 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) |
| 17 |
|
fvconst2g |
⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑥 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
| 18 |
9 16 17
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
| 19 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ 𝑆 ) |
| 20 |
18 19
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 21 |
6
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 22 |
21
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 23 |
15 20 22
|
seqcl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ∈ 𝑆 ) |
| 24 |
13 23
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |