| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnndir.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgnndir.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgnndir.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 5 | 1 2 3 | mulgdir | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  1  ∈  ℤ  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑁  +  1 )  ·  𝑋 )  =  ( ( 𝑁  ·  𝑋 )  +  ( 1  ·  𝑋 ) ) ) | 
						
							| 6 | 4 5 | mp3anr2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑁  +  1 )  ·  𝑋 )  =  ( ( 𝑁  ·  𝑋 )  +  ( 1  ·  𝑋 ) ) ) | 
						
							| 7 | 6 | 3impb | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑁  +  1 )  ·  𝑋 )  =  ( ( 𝑁  ·  𝑋 )  +  ( 1  ·  𝑋 ) ) ) | 
						
							| 8 | 1 2 | mulg1 | ⊢ ( 𝑋  ∈  𝐵  →  ( 1  ·  𝑋 )  =  𝑋 ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 1  ·  𝑋 )  =  𝑋 ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑁  ·  𝑋 )  +  ( 1  ·  𝑋 ) )  =  ( ( 𝑁  ·  𝑋 )  +  𝑋 ) ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑁  +  1 )  ·  𝑋 )  =  ( ( 𝑁  ·  𝑋 )  +  𝑋 ) ) |