Step |
Hyp |
Ref |
Expression |
1 |
|
mulgpropd.m |
⊢ · = ( .g ‘ 𝐺 ) |
2 |
|
mulgpropd.n |
⊢ × = ( .g ‘ 𝐻 ) |
3 |
|
mulgpropd.b1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
4 |
|
mulgpropd.b2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐻 ) ) |
5 |
|
mulgpropd.i |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐾 ) |
6 |
|
mulgpropd.k |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐾 ) |
7 |
|
mulgpropd.e |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
8 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐾 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐾 ) ) |
9 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐾 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐾 ) ) |
10 |
8 9
|
anim12d |
⊢ ( 𝐵 ⊆ 𝐾 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) ) |
12 |
11
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) |
13 |
12 7
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
14 |
3 4 13
|
grpidpropd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
16 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → 1 ∈ ℤ ) |
17 |
|
vex |
⊢ 𝑏 ∈ V |
18 |
17
|
fvconst2 |
⊢ ( 𝑥 ∈ ℕ → ( ( ℕ × { 𝑏 } ) ‘ 𝑥 ) = 𝑏 ) |
19 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
20 |
19
|
eqcomi |
⊢ ( ℤ≥ ‘ 1 ) = ℕ |
21 |
18 20
|
eleq2s |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) → ( ( ℕ × { 𝑏 } ) ‘ 𝑥 ) = 𝑏 ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( ℕ × { 𝑏 } ) ‘ 𝑥 ) = 𝑏 ) |
23 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → 𝐵 ⊆ 𝐾 ) |
24 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
25 |
23 24
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐾 ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → 𝑏 ∈ 𝐾 ) |
27 |
22 26
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( ℕ × { 𝑏 } ) ‘ 𝑥 ) ∈ 𝐾 ) |
28 |
6
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐾 ) |
29 |
7
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
30 |
16 27 28 29
|
seqfeq3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ) |
31 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) ) |
32 |
3 4 13
|
grpinvpropd |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐻 ) ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( invg ‘ 𝐺 ) = ( invg ‘ 𝐻 ) ) |
34 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) |
35 |
33 34
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) |
36 |
31 35
|
ifeq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) = if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) |
37 |
15 36
|
ifeq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℤ ∧ 𝑏 ∈ 𝐵 ) → if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) = if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) |
38 |
37
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑎 ∈ ℤ , 𝑏 ∈ 𝐵 ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) = ( 𝑎 ∈ ℤ , 𝑏 ∈ 𝐵 ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) ) |
39 |
|
eqidd |
⊢ ( 𝜑 → ℤ = ℤ ) |
40 |
|
eqidd |
⊢ ( 𝜑 → if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) = if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) |
41 |
39 3 40
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑎 ∈ ℤ , 𝑏 ∈ 𝐵 ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) ) |
42 |
|
eqidd |
⊢ ( 𝜑 → if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) = if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) |
43 |
39 4 42
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑎 ∈ ℤ , 𝑏 ∈ 𝐵 ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) ) |
44 |
38 41 43
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) ) |
45 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
46 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
47 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
48 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
49 |
45 46 47 48 1
|
mulgfval |
⊢ · = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐺 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐺 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐺 ) ‘ ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) |
50 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
51 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
52 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
53 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
54 |
50 51 52 53 2
|
mulgfval |
⊢ × = ( 𝑎 ∈ ℤ , 𝑏 ∈ ( Base ‘ 𝐻 ) ↦ if ( 𝑎 = 0 , ( 0g ‘ 𝐻 ) , if ( 0 < 𝑎 , ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ 𝑎 ) , ( ( invg ‘ 𝐻 ) ‘ ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑏 } ) ) ‘ - 𝑎 ) ) ) ) ) |
55 |
44 49 54
|
3eqtr4g |
⊢ ( 𝜑 → · = × ) |