Step |
Hyp |
Ref |
Expression |
1 |
|
mulgghm2.m |
⊢ · = ( .g ‘ 𝑅 ) |
2 |
|
mulgghm2.f |
⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) |
3 |
|
mulgrhm.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
5 |
|
zring1 |
⊢ 1 = ( 1r ‘ ℤring ) |
6 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
|
zringring |
⊢ ℤring ∈ Ring |
9 |
8
|
a1i |
⊢ ( 𝑅 ∈ Ring → ℤring ∈ Ring ) |
10 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
11 |
|
1z |
⊢ 1 ∈ ℤ |
12 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 · 1 ) = ( 1 · 1 ) ) |
13 |
|
ovex |
⊢ ( 1 · 1 ) ∈ V |
14 |
12 2 13
|
fvmpt |
⊢ ( 1 ∈ ℤ → ( 𝐹 ‘ 1 ) = ( 1 · 1 ) ) |
15 |
11 14
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = ( 1 · 1 ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
17 |
16 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
18 |
16 1
|
mulg1 |
⊢ ( 1 ∈ ( Base ‘ 𝑅 ) → ( 1 · 1 ) = 1 ) |
19 |
17 18
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1 · 1 ) = 1 ) |
20 |
15 19
|
eqtrid |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ‘ 1 ) = 1 ) |
21 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
22 |
21
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑅 ∈ Grp ) |
23 |
|
simprr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) |
24 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
25 |
16 1
|
mulgcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) |
26 |
22 23 24 25
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) |
27 |
16 7 3
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑦 · 1 ) ) |
28 |
26 27
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑦 · 1 ) ) |
29 |
28
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
30 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑅 ∈ Ring ) |
31 |
|
simprl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℤ ) |
32 |
16 1 7
|
mulgass2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) ) |
33 |
30 31 24 26 32
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) ) |
34 |
16 1
|
mulgass |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
35 |
22 31 23 24 34
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
36 |
29 33 35
|
3eqtr4rd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
37 |
|
zmulcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
38 |
37
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
39 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑥 · 𝑦 ) → ( 𝑛 · 1 ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) |
40 |
|
ovex |
⊢ ( ( 𝑥 · 𝑦 ) · 1 ) ∈ V |
41 |
39 2 40
|
fvmpt |
⊢ ( ( 𝑥 · 𝑦 ) ∈ ℤ → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) |
42 |
38 41
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) |
43 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 1 ) = ( 𝑥 · 1 ) ) |
44 |
|
ovex |
⊢ ( 𝑥 · 1 ) ∈ V |
45 |
43 2 44
|
fvmpt |
⊢ ( 𝑥 ∈ ℤ → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 · 1 ) ) |
46 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 1 ) = ( 𝑦 · 1 ) ) |
47 |
|
ovex |
⊢ ( 𝑦 · 1 ) ∈ V |
48 |
46 2 47
|
fvmpt |
⊢ ( 𝑦 ∈ ℤ → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 1 ) ) |
49 |
45 48
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
50 |
49
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
51 |
36 42 50
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
52 |
1 2 16
|
mulgghm2 |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |
53 |
21 17 52
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |
54 |
4 5 3 6 7 9 10 20 51 53
|
isrhm2d |
⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring RingHom 𝑅 ) ) |