| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgghm2.m | ⊢  ·   =  ( .g ‘ 𝑅 ) | 
						
							| 2 |  | mulgghm2.f | ⊢ 𝐹  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·   1  ) ) | 
						
							| 3 |  | mulgrhm.1 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 4 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 5 |  | zring1 | ⊢ 1  =  ( 1r ‘ ℤring ) | 
						
							| 6 |  | zringmulr | ⊢  ·   =  ( .r ‘ ℤring ) | 
						
							| 7 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | zringring | ⊢ ℤring  ∈  Ring | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑅  ∈  Ring  →  ℤring  ∈  Ring ) | 
						
							| 10 |  | id | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Ring ) | 
						
							| 11 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑛  =  1  →  ( 𝑛  ·   1  )  =  ( 1  ·   1  ) ) | 
						
							| 13 |  | ovex | ⊢ ( 1  ·   1  )  ∈  V | 
						
							| 14 | 12 2 13 | fvmpt | ⊢ ( 1  ∈  ℤ  →  ( 𝐹 ‘ 1 )  =  ( 1  ·   1  ) ) | 
						
							| 15 | 11 14 | ax-mp | ⊢ ( 𝐹 ‘ 1 )  =  ( 1  ·   1  ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 17 | 16 3 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 16 1 | mulg1 | ⊢ (  1   ∈  ( Base ‘ 𝑅 )  →  ( 1  ·   1  )  =   1  ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝑅  ∈  Ring  →  ( 1  ·   1  )  =   1  ) | 
						
							| 20 | 15 19 | eqtrid | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐹 ‘ 1 )  =   1  ) | 
						
							| 21 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑅  ∈  Grp ) | 
						
							| 23 |  | simprr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑦  ∈  ℤ ) | 
						
							| 24 | 17 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →   1   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 25 | 16 1 | mulgcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑦  ∈  ℤ  ∧   1   ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑦  ·   1  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 | 22 23 24 25 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑦  ·   1  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 27 | 16 7 3 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑦  ·   1  )  ∈  ( Base ‘ 𝑅 ) )  →  (  1  ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) )  =  ( 𝑦  ·   1  ) ) | 
						
							| 28 | 26 27 | syldan | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  (  1  ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) )  =  ( 𝑦  ·   1  ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  ·  (  1  ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) ) )  =  ( 𝑥  ·  ( 𝑦  ·   1  ) ) ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑅  ∈  Ring ) | 
						
							| 31 |  | simprl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  𝑥  ∈  ℤ ) | 
						
							| 32 | 16 1 7 | mulgass2 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧   1   ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑦  ·   1  )  ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑥  ·   1  ) ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) )  =  ( 𝑥  ·  (  1  ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) ) | 
						
							| 33 | 30 31 24 26 32 | syl13anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑥  ·   1  ) ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) )  =  ( 𝑥  ·  (  1  ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) ) | 
						
							| 34 | 16 1 | mulgass | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ  ∧   1   ∈  ( Base ‘ 𝑅 ) ) )  →  ( ( 𝑥  ·  𝑦 )  ·   1  )  =  ( 𝑥  ·  ( 𝑦  ·   1  ) ) ) | 
						
							| 35 | 22 31 23 24 34 | syl13anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑥  ·  𝑦 )  ·   1  )  =  ( 𝑥  ·  ( 𝑦  ·   1  ) ) ) | 
						
							| 36 | 29 33 35 | 3eqtr4rd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝑥  ·  𝑦 )  ·   1  )  =  ( ( 𝑥  ·   1  ) ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) | 
						
							| 37 |  | zmulcl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℤ ) | 
						
							| 39 |  | oveq1 | ⊢ ( 𝑛  =  ( 𝑥  ·  𝑦 )  →  ( 𝑛  ·   1  )  =  ( ( 𝑥  ·  𝑦 )  ·   1  ) ) | 
						
							| 40 |  | ovex | ⊢ ( ( 𝑥  ·  𝑦 )  ·   1  )  ∈  V | 
						
							| 41 | 39 2 40 | fvmpt | ⊢ ( ( 𝑥  ·  𝑦 )  ∈  ℤ  →  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑥  ·  𝑦 )  ·   1  ) ) | 
						
							| 42 | 38 41 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝑥  ·  𝑦 )  ·   1  ) ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑛  =  𝑥  →  ( 𝑛  ·   1  )  =  ( 𝑥  ·   1  ) ) | 
						
							| 44 |  | ovex | ⊢ ( 𝑥  ·   1  )  ∈  V | 
						
							| 45 | 43 2 44 | fvmpt | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝑥  ·   1  ) ) | 
						
							| 46 |  | oveq1 | ⊢ ( 𝑛  =  𝑦  →  ( 𝑛  ·   1  )  =  ( 𝑦  ·   1  ) ) | 
						
							| 47 |  | ovex | ⊢ ( 𝑦  ·   1  )  ∈  V | 
						
							| 48 | 46 2 47 | fvmpt | ⊢ ( 𝑦  ∈  ℤ  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝑦  ·   1  ) ) | 
						
							| 49 | 45 48 | oveqan12d | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ )  →  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝑥  ·   1  ) ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝑥  ·   1  ) ( .r ‘ 𝑅 ) ( 𝑦  ·   1  ) ) ) | 
						
							| 51 | 36 42 50 | 3eqtr4d | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  ℤ  ∧  𝑦  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝑥  ·  𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 52 | 1 2 16 | mulgghm2 | ⊢ ( ( 𝑅  ∈  Grp  ∧   1   ∈  ( Base ‘ 𝑅 ) )  →  𝐹  ∈  ( ℤring  GrpHom  𝑅 ) ) | 
						
							| 53 | 21 17 52 | syl2anc | ⊢ ( 𝑅  ∈  Ring  →  𝐹  ∈  ( ℤring  GrpHom  𝑅 ) ) | 
						
							| 54 | 4 5 3 6 7 9 10 20 51 53 | isrhm2d | ⊢ ( 𝑅  ∈  Ring  →  𝐹  ∈  ( ℤring  RingHom  𝑅 ) ) |