Step |
Hyp |
Ref |
Expression |
1 |
|
mulgghm2.m |
⊢ · = ( .g ‘ 𝑅 ) |
2 |
|
mulgghm2.f |
⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) |
3 |
|
mulgrhm.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
4 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
4 5
|
rhmf |
⊢ ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
8 |
7
|
feqmptd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = ( 𝑛 ∈ ℤ ↦ ( 𝑓 ‘ 𝑛 ) ) ) |
9 |
|
rhmghm |
⊢ ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 ∈ ( ℤring GrpHom 𝑅 ) ) |
10 |
9
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 𝑓 ∈ ( ℤring GrpHom 𝑅 ) ) |
11 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) |
12 |
|
1zzd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → 1 ∈ ℤ ) |
13 |
|
eqid |
⊢ ( .g ‘ ℤring ) = ( .g ‘ ℤring ) |
14 |
4 13 1
|
ghmmulg |
⊢ ( ( 𝑓 ∈ ( ℤring GrpHom 𝑅 ) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑛 · ( 𝑓 ‘ 1 ) ) ) |
15 |
10 11 12 14
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑛 · ( 𝑓 ‘ 1 ) ) ) |
16 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
17 |
|
cnfldmulg |
⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℂ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) ) |
18 |
16 17
|
mpan2 |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) ) |
19 |
|
1z |
⊢ 1 ∈ ℤ |
20 |
18
|
adantr |
⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 · 1 ) ) |
21 |
|
zringmulg |
⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℤring ) 1 ) = ( 𝑛 · 1 ) ) |
22 |
20 21
|
eqtr4d |
⊢ ( ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 ( .g ‘ ℤring ) 1 ) ) |
23 |
19 22
|
mpan2 |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℂfld ) 1 ) = ( 𝑛 ( .g ‘ ℤring ) 1 ) ) |
24 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
25 |
24
|
mulid1d |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · 1 ) = 𝑛 ) |
26 |
18 23 25
|
3eqtr3d |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 ( .g ‘ ℤring ) 1 ) = 𝑛 ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ( .g ‘ ℤring ) 1 ) = 𝑛 ) |
28 |
27
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ ( 𝑛 ( .g ‘ ℤring ) 1 ) ) = ( 𝑓 ‘ 𝑛 ) ) |
29 |
|
zring1 |
⊢ 1 = ( 1r ‘ ℤring ) |
30 |
29 3
|
rhm1 |
⊢ ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → ( 𝑓 ‘ 1 ) = 1 ) |
31 |
30
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ 1 ) = 1 ) |
32 |
31
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · ( 𝑓 ‘ 1 ) ) = ( 𝑛 · 1 ) ) |
33 |
15 28 32
|
3eqtr3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) ∧ 𝑛 ∈ ℤ ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑛 · 1 ) ) |
34 |
33
|
mpteq2dva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → ( 𝑛 ∈ ℤ ↦ ( 𝑓 ‘ 𝑛 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |
35 |
8 34
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) ) |
36 |
35 2
|
eqtr4di |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 = 𝐹 ) |
37 |
|
velsn |
⊢ ( 𝑓 ∈ { 𝐹 } ↔ 𝑓 = 𝐹 ) |
38 |
36 37
|
sylibr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑓 ∈ ( ℤring RingHom 𝑅 ) ) → 𝑓 ∈ { 𝐹 } ) |
39 |
38
|
ex |
⊢ ( 𝑅 ∈ Ring → ( 𝑓 ∈ ( ℤring RingHom 𝑅 ) → 𝑓 ∈ { 𝐹 } ) ) |
40 |
39
|
ssrdv |
⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) ⊆ { 𝐹 } ) |
41 |
1 2 3
|
mulgrhm |
⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring RingHom 𝑅 ) ) |
42 |
41
|
snssd |
⊢ ( 𝑅 ∈ Ring → { 𝐹 } ⊆ ( ℤring RingHom 𝑅 ) ) |
43 |
40 42
|
eqssd |
⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { 𝐹 } ) |