| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnnsubcl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgnnsubcl.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgnnsubcl.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 4 |  | mulgnnsubcl.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 5 |  | mulgnnsubcl.s | ⊢ ( 𝜑  →  𝑆  ⊆  𝐵 ) | 
						
							| 6 |  | mulgnnsubcl.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 7 |  | mulgnn0subcl.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 8 |  | mulgnn0subcl.c | ⊢ ( 𝜑  →   0   ∈  𝑆 ) | 
						
							| 9 |  | mulgsubcl.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 10 |  | mulgsubcl.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑆 )  →  ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 | mulgnn0subcl | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  ( 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 12 | 11 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℕ0 )  ∧  𝑋  ∈  𝑆 )  →  ( 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 13 | 12 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 14 | 13 | 3adantl2 | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 15 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  →  𝑁  ∈  ℤ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 17 | 16 | zcnd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 18 | 17 | negnegd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  - - 𝑁  =  𝑁 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  ( - - 𝑁  ·  𝑋 )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 20 |  | id | ⊢ ( - 𝑁  ∈  ℕ  →  - 𝑁  ∈  ℕ ) | 
						
							| 21 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  →  𝑆  ⊆  𝐵 ) | 
						
							| 22 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  𝑆 ) | 
						
							| 23 | 21 22 | sseldd | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  𝐵 ) | 
						
							| 24 | 1 2 9 | mulgnegnn | ⊢ ( ( - 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝐵 )  →  ( - - 𝑁  ·  𝑋 )  =  ( 𝐼 ‘ ( - 𝑁  ·  𝑋 ) ) ) | 
						
							| 25 | 20 23 24 | syl2anr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  ( - - 𝑁  ·  𝑋 )  =  ( 𝐼 ‘ ( - 𝑁  ·  𝑋 ) ) ) | 
						
							| 26 | 19 25 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  ( 𝑁  ·  𝑋 )  =  ( 𝐼 ‘ ( - 𝑁  ·  𝑋 ) ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑥  =  ( - 𝑁  ·  𝑋 )  →  ( 𝐼 ‘ 𝑥 )  =  ( 𝐼 ‘ ( - 𝑁  ·  𝑋 ) ) ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑥  =  ( - 𝑁  ·  𝑋 )  →  ( ( 𝐼 ‘ 𝑥 )  ∈  𝑆  ↔  ( 𝐼 ‘ ( - 𝑁  ·  𝑋 ) )  ∈  𝑆 ) ) | 
						
							| 29 | 10 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  →  ∀ 𝑥  ∈  𝑆 ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  ∀ 𝑥  ∈  𝑆 ( 𝐼 ‘ 𝑥 )  ∈  𝑆 ) | 
						
							| 32 | 1 2 3 4 5 6 | mulgnnsubcl | ⊢ ( ( 𝜑  ∧  - 𝑁  ∈  ℕ  ∧  𝑋  ∈  𝑆 )  →  ( - 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 33 | 32 | 3expa | ⊢ ( ( ( 𝜑  ∧  - 𝑁  ∈  ℕ )  ∧  𝑋  ∈  𝑆 )  →  ( - 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 34 | 33 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  ( - 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 35 | 34 | 3adantl2 | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  ( - 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 36 | 28 31 35 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  ( 𝐼 ‘ ( - 𝑁  ·  𝑋 ) )  ∈  𝑆 ) | 
						
							| 37 | 26 36 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  - 𝑁  ∈  ℕ )  →  ( 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 38 | 37 | adantrl | ⊢ ( ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝑁  ·  𝑋 )  ∈  𝑆 ) | 
						
							| 39 |  | elznn0nn | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 40 | 15 39 | sylib | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  →  ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 41 | 14 38 40 | mpjaodan | ⊢ ( ( 𝜑  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝑆 )  →  ( 𝑁  ·  𝑋 )  ∈  𝑆 ) |