Metamath Proof Explorer
		
		
		
		Description:  The product of two positive numbers is positive.  (Contributed by NM, 16-May-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lt.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | lt.2 | ⊢ 𝐵  ∈  ℝ | 
				
					|  | Assertion | mulgt0i | ⊢  ( ( 0  <  𝐴  ∧  0  <  𝐵 )  →  0  <  ( 𝐴  ·  𝐵 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lt.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | lt.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | axmulgt0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 0  <  𝐴  ∧  0  <  𝐵 )  →  0  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 4 | 1 2 3 | mp2an | ⊢ ( ( 0  <  𝐴  ∧  0  <  𝐵 )  →  0  <  ( 𝐴  ·  𝐵 ) ) |