Metamath Proof Explorer
		
		
		
		Description:  The product of two positive numbers is positive.  (Contributed by NM, 18-May-1999)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lt.1 | ⊢ 𝐴  ∈  ℝ | 
					
						|  |  | lt.2 | ⊢ 𝐵  ∈  ℝ | 
					
						|  |  | mulgt0i.3 | ⊢ 0  <  𝐴 | 
					
						|  |  | mulgt0i.4 | ⊢ 0  <  𝐵 | 
				
					|  | Assertion | mulgt0ii | ⊢  0  <  ( 𝐴  ·  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lt.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | lt.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | mulgt0i.3 | ⊢ 0  <  𝐴 | 
						
							| 4 |  | mulgt0i.4 | ⊢ 0  <  𝐵 | 
						
							| 5 | 1 2 | mulgt0i | ⊢ ( ( 0  <  𝐴  ∧  0  <  𝐵 )  →  0  <  ( 𝐴  ·  𝐵 ) ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ 0  <  ( 𝐴  ·  𝐵 ) |