| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 1  <  𝐴  ∧  1  <  𝐵 )  →  1  <  𝐴 ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 1  <  𝐴  ∧  1  <  𝐵 )  →  1  <  𝐴 ) ) | 
						
							| 3 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 4 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 5 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 6 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 7 | 4 5 6 | mp3an12 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  <  1  ∧  1  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 8 | 3 7 | mpani | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  <  𝐴  →  0  <  𝐴 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 1  <  𝐴  →  0  <  𝐴 ) ) | 
						
							| 10 |  | ltmul2 | ⊢ ( ( 1  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 1  <  𝐵  ↔  ( 𝐴  ·  1 )  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 11 | 10 | biimpd | ⊢ ( ( 1  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 1  <  𝐵  →  ( 𝐴  ·  1 )  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 12 | 5 11 | mp3an1 | ⊢ ( ( 𝐵  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( 1  <  𝐵  →  ( 𝐴  ·  1 )  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 13 | 12 | exp32 | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝐴  ∈  ℝ  →  ( 0  <  𝐴  →  ( 1  <  𝐵  →  ( 𝐴  ·  1 )  <  ( 𝐴  ·  𝐵 ) ) ) ) ) | 
						
							| 14 | 13 | impcom | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  <  𝐴  →  ( 1  <  𝐵  →  ( 𝐴  ·  1 )  <  ( 𝐴  ·  𝐵 ) ) ) ) | 
						
							| 15 | 9 14 | syld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 1  <  𝐴  →  ( 1  <  𝐵  →  ( 𝐴  ·  1 )  <  ( 𝐴  ·  𝐵 ) ) ) ) | 
						
							| 16 | 15 | impd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 1  <  𝐴  ∧  1  <  𝐵 )  →  ( 𝐴  ·  1 )  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 17 |  | ax-1rid | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 19 | 18 | breq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  ·  1 )  <  ( 𝐴  ·  𝐵 )  ↔  𝐴  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 20 | 16 19 | sylibd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 1  <  𝐴  ∧  1  <  𝐵 )  →  𝐴  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 21 | 2 20 | jcad | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 1  <  𝐴  ∧  1  <  𝐵 )  →  ( 1  <  𝐴  ∧  𝐴  <  ( 𝐴  ·  𝐵 ) ) ) ) | 
						
							| 22 |  | remulcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 23 |  | lttr | ⊢ ( ( 1  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( 𝐴  ·  𝐵 )  ∈  ℝ )  →  ( ( 1  <  𝐴  ∧  𝐴  <  ( 𝐴  ·  𝐵 ) )  →  1  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 24 | 5 23 | mp3an1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐴  ·  𝐵 )  ∈  ℝ )  →  ( ( 1  <  𝐴  ∧  𝐴  <  ( 𝐴  ·  𝐵 ) )  →  1  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 25 | 22 24 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 1  <  𝐴  ∧  𝐴  <  ( 𝐴  ·  𝐵 ) )  →  1  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 26 | 21 25 | syld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 1  <  𝐴  ∧  1  <  𝐵 )  →  1  <  ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 27 | 26 | imp | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 1  <  𝐴  ∧  1  <  𝐵 ) )  →  1  <  ( 𝐴  ·  𝐵 ) ) |