Step |
Hyp |
Ref |
Expression |
1 |
|
mulgval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mulgval.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
mulgval.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
mulgval.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
5 |
|
mulgval.t |
⊢ · = ( .g ‘ 𝐺 ) |
6 |
|
mulgval.s |
⊢ 𝑆 = seq 1 ( + , ( ℕ × { 𝑋 } ) ) |
7 |
|
simpl |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → 𝑛 = 𝑁 ) |
8 |
7
|
eqeq1d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 𝑛 = 0 ↔ 𝑁 = 0 ) ) |
9 |
7
|
breq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 0 < 𝑛 ↔ 0 < 𝑁 ) ) |
10 |
|
simpr |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
11 |
10
|
sneqd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → { 𝑥 } = { 𝑋 } ) |
12 |
11
|
xpeq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( ℕ × { 𝑥 } ) = ( ℕ × { 𝑋 } ) ) |
13 |
12
|
seqeq3d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → seq 1 ( + , ( ℕ × { 𝑥 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) ) |
14 |
13 6
|
eqtr4di |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → seq 1 ( + , ( ℕ × { 𝑥 } ) ) = 𝑆 ) |
15 |
14 7
|
fveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) = ( 𝑆 ‘ 𝑁 ) ) |
16 |
7
|
negeqd |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → - 𝑛 = - 𝑁 ) |
17 |
14 16
|
fveq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) = ( 𝑆 ‘ - 𝑁 ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) = ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) |
19 |
9 15 18
|
ifbieq12d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) = if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) |
20 |
8 19
|
ifbieq2d |
⊢ ( ( 𝑛 = 𝑁 ∧ 𝑥 = 𝑋 ) → if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) = if ( 𝑁 = 0 , 0 , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |
21 |
1 2 3 4 5
|
mulgfval |
⊢ · = ( 𝑛 ∈ ℤ , 𝑥 ∈ 𝐵 ↦ if ( 𝑛 = 0 , 0 , if ( 0 < 𝑛 , ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ 𝑛 ) , ( 𝐼 ‘ ( seq 1 ( + , ( ℕ × { 𝑥 } ) ) ‘ - 𝑛 ) ) ) ) ) |
22 |
3
|
fvexi |
⊢ 0 ∈ V |
23 |
|
fvex |
⊢ ( 𝑆 ‘ 𝑁 ) ∈ V |
24 |
|
fvex |
⊢ ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ∈ V |
25 |
23 24
|
ifex |
⊢ if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ∈ V |
26 |
22 25
|
ifex |
⊢ if ( 𝑁 = 0 , 0 , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ∈ V |
27 |
20 21 26
|
ovmpoa |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = if ( 𝑁 = 0 , 0 , if ( 0 < 𝑁 , ( 𝑆 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝑆 ‘ - 𝑁 ) ) ) ) ) |