| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnn0z.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgnn0z.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgnn0z.o | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 4 |  | grpmnd | ⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  →  𝐺  ∈  Mnd ) | 
						
							| 6 | 1 2 3 | mulgnn0z | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ·   0  )  =   0  ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑁  ·   0  )  =   0  ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  𝐺  ∈  Grp ) | 
						
							| 9 |  | nn0z | ⊢ ( - 𝑁  ∈  ℕ0  →  - 𝑁  ∈  ℤ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  - 𝑁  ∈  ℤ ) | 
						
							| 11 | 1 3 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →   0   ∈  𝐵 ) | 
						
							| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →   0   ∈  𝐵 ) | 
						
							| 13 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 14 | 1 2 13 | mulgneg | ⊢ ( ( 𝐺  ∈  Grp  ∧  - 𝑁  ∈  ℤ  ∧   0   ∈  𝐵 )  →  ( - - 𝑁  ·   0  )  =  ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·   0  ) ) ) | 
						
							| 15 | 8 10 12 14 | syl3anc | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( - - 𝑁  ·   0  )  =  ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·   0  ) ) ) | 
						
							| 16 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 17 | 16 | ad2antlr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℂ ) | 
						
							| 18 | 17 | negnegd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  - - 𝑁  =  𝑁 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( - - 𝑁  ·   0  )  =  ( 𝑁  ·   0  ) ) | 
						
							| 20 | 1 2 3 | mulgnn0z | ⊢ ( ( 𝐺  ∈  Mnd  ∧  - 𝑁  ∈  ℕ0 )  →  ( - 𝑁  ·   0  )  =   0  ) | 
						
							| 21 | 5 20 | sylan | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( - 𝑁  ·   0  )  =   0  ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·   0  ) )  =  ( ( invg ‘ 𝐺 ) ‘  0  ) ) | 
						
							| 23 | 3 13 | grpinvid | ⊢ ( 𝐺  ∈  Grp  →  ( ( invg ‘ 𝐺 ) ‘  0  )  =   0  ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( ( invg ‘ 𝐺 ) ‘  0  )  =   0  ) | 
						
							| 25 | 22 24 | eqtrd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·   0  ) )  =   0  ) | 
						
							| 26 | 15 19 25 | 3eqtr3d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  ∧  - 𝑁  ∈  ℕ0 )  →  ( 𝑁  ·   0  )  =   0  ) | 
						
							| 27 |  | elznn0 | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℝ  ∧  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) ) | 
						
							| 28 | 27 | simprbi | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∈  ℕ0  ∨  - 𝑁  ∈  ℕ0 ) ) | 
						
							| 30 | 7 26 29 | mpjaodan | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ·   0  )  =   0  ) |