Description: Identity law for multiplication. See mulid1 for commuted version. (Contributed by NM, 8-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | mulid2 | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn | ⊢ 1 ∈ ℂ | |
2 | mulcom | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 · 𝐴 ) = ( 𝐴 · 1 ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = ( 𝐴 · 1 ) ) |
4 | mulid1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) | |
5 | 3 4 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |