Step |
Hyp |
Ref |
Expression |
1 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
2 |
1
|
le0neg1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ≤ 0 ↔ 0 ≤ - ( 𝐴 · 𝐵 ) ) ) |
3 |
|
le0neg2 |
⊢ ( 𝐵 ∈ ℝ → ( 0 ≤ 𝐵 ↔ - 𝐵 ≤ 0 ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝐵 ∈ ℝ → ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ↔ ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ) ) |
5 |
|
le0neg1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ≤ 0 ↔ 0 ≤ - 𝐵 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ↔ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) |
7 |
4 6
|
orbi12d |
⊢ ( 𝐵 ∈ ℝ → ( ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ↔ ( ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ↔ ( ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) ) |
9 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
10 |
|
mulge0b |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · - 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) ) |
11 |
9 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · - 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ - 𝐵 ≤ 0 ) ∨ ( 0 ≤ 𝐴 ∧ 0 ≤ - 𝐵 ) ) ) ) |
12 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
13 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
14 |
|
mulneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
15 |
14
|
breq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 ≤ ( 𝐴 · - 𝐵 ) ↔ 0 ≤ - ( 𝐴 · 𝐵 ) ) ) |
16 |
12 13 15
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 · - 𝐵 ) ↔ 0 ≤ - ( 𝐴 · 𝐵 ) ) ) |
17 |
8 11 16
|
3bitr2rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ - ( 𝐴 · 𝐵 ) ↔ ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ) ) |
18 |
2 17
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ≤ 0 ↔ ( ( 𝐴 ≤ 0 ∧ 0 ≤ 𝐵 ) ∨ ( 0 ≤ 𝐴 ∧ 𝐵 ≤ 0 ) ) ) ) |