| Step |
Hyp |
Ref |
Expression |
| 1 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → - 𝐴 ∈ ℝ ) |
| 3 |
|
lt0neg1 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
| 4 |
3
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < - 𝐴 ) |
| 5 |
2 4
|
jca |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ) |
| 6 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) → - 𝐵 ∈ ℝ ) |
| 8 |
|
lt0neg1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) |
| 9 |
8
|
biimpa |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) → 0 < - 𝐵 ) |
| 10 |
7 9
|
jca |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) → ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) |
| 11 |
|
mulgt0 |
⊢ ( ( ( - 𝐴 ∈ ℝ ∧ 0 < - 𝐴 ) ∧ ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) → 0 < ( - 𝐴 · - 𝐵 ) ) |
| 12 |
5 10 11
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) → 0 < ( - 𝐴 · - 𝐵 ) ) |
| 13 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 14 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 15 |
|
mul2neg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 16 |
13 14 15
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 17 |
16
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) → ( - 𝐴 · - 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 18 |
12 17
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 < 0 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |