| Step | Hyp | Ref | Expression | 
						
							| 1 |  | renegcl | ⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ ) | 
						
							| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  - 𝐴  ∈  ℝ ) | 
						
							| 3 |  | lt0neg1 | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  <  0  ↔  0  <  - 𝐴 ) ) | 
						
							| 4 | 3 | biimpa | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  →  0  <  - 𝐴 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  0  <  - 𝐴 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) | 
						
							| 7 |  | mulgt0 | ⊢ ( ( ( - 𝐴  ∈  ℝ  ∧  0  <  - 𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  0  <  ( - 𝐴  ·  𝐵 ) ) | 
						
							| 8 | 2 5 6 7 | syl21anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  0  <  ( - 𝐴  ·  𝐵 ) ) | 
						
							| 9 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 11 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 12 | 11 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 13 | 10 12 | mulneg1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  ( - 𝐴  ·  𝐵 )  =  - ( 𝐴  ·  𝐵 ) ) | 
						
							| 14 | 8 13 | breqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  0  <  - ( 𝐴  ·  𝐵 ) ) | 
						
							| 15 |  | remulcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 16 | 15 | ad2ant2r | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  ( 𝐴  ·  𝐵 )  ∈  ℝ ) | 
						
							| 17 | 16 | lt0neg1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  ( ( 𝐴  ·  𝐵 )  <  0  ↔  0  <  - ( 𝐴  ·  𝐵 ) ) ) | 
						
							| 18 | 14 17 | mpbird | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  <  0 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  ( 𝐴  ·  𝐵 )  <  0 ) |