Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | mulm1 | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn | ⊢ 1 ∈ ℂ | |
2 | mulneg1 | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 1 · 𝐴 ) = - ( 1 · 𝐴 ) ) | |
3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - ( 1 · 𝐴 ) ) |
4 | mulid2 | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
5 | 4 | negeqd | ⊢ ( 𝐴 ∈ ℂ → - ( 1 · 𝐴 ) = - 𝐴 ) |
6 | 3 5 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) |