Metamath Proof Explorer


Theorem mulm1

Description: Product with minus one is negative. (Contributed by NM, 16-Nov-1999)

Ref Expression
Assertion mulm1 ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 )

Proof

Step Hyp Ref Expression
1 ax-1cn 1 ∈ ℂ
2 mulneg1 ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 1 · 𝐴 ) = - ( 1 · 𝐴 ) )
3 1 2 mpan ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - ( 1 · 𝐴 ) )
4 mulid2 ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 )
5 4 negeqd ( 𝐴 ∈ ℂ → - ( 1 · 𝐴 ) = - 𝐴 )
6 3 5 eqtrd ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 )