Metamath Proof Explorer


Theorem mulmod0

Description: The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018) (Revised by AV, 5-Jul-2020)

Ref Expression
Assertion mulmod0 ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 )

Proof

Step Hyp Ref Expression
1 zcn ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ )
2 1 adantr ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ )
3 rpcn ( 𝑀 ∈ ℝ+𝑀 ∈ ℂ )
4 3 adantl ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℂ )
5 rpne0 ( 𝑀 ∈ ℝ+𝑀 ≠ 0 )
6 5 adantl ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ≠ 0 )
7 2 4 6 divcan4d ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) / 𝑀 ) = 𝐴 )
8 simpl ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℤ )
9 7 8 eqeltrd ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ )
10 zre ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ )
11 rpre ( 𝑀 ∈ ℝ+𝑀 ∈ ℝ )
12 remulcl ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝐴 · 𝑀 ) ∈ ℝ )
13 10 11 12 syl2an ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 · 𝑀 ) ∈ ℝ )
14 mod0 ( ( ( 𝐴 · 𝑀 ) ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ↔ ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ ) )
15 13 14 sylancom ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 ↔ ( ( 𝐴 · 𝑀 ) / 𝑀 ) ∈ ℤ ) )
16 9 15 mpbird ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 · 𝑀 ) mod 𝑀 ) = 0 )