| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zcn | 
							⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							rpcn | 
							⊢ ( 𝑀  ∈  ℝ+  →  𝑀  ∈  ℂ )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  𝑀  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							rpne0 | 
							⊢ ( 𝑀  ∈  ℝ+  →  𝑀  ≠  0 )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  𝑀  ≠  0 )  | 
						
						
							| 7 | 
							
								2 4 6
							 | 
							divcan4d | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  ·  𝑀 )  /  𝑀 )  =  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  𝐴  ∈  ℤ )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqeltrd | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  ·  𝑀 )  /  𝑀 )  ∈  ℤ )  | 
						
						
							| 10 | 
							
								
							 | 
							zre | 
							⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ )  | 
						
						
							| 11 | 
							
								
							 | 
							rpre | 
							⊢ ( 𝑀  ∈  ℝ+  →  𝑀  ∈  ℝ )  | 
						
						
							| 12 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( 𝐴  ·  𝑀 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  ( 𝐴  ·  𝑀 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								
							 | 
							mod0 | 
							⊢ ( ( ( 𝐴  ·  𝑀 )  ∈  ℝ  ∧  𝑀  ∈  ℝ+ )  →  ( ( ( 𝐴  ·  𝑀 )  mod  𝑀 )  =  0  ↔  ( ( 𝐴  ·  𝑀 )  /  𝑀 )  ∈  ℤ ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylancom | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  ( ( ( 𝐴  ·  𝑀 )  mod  𝑀 )  =  0  ↔  ( ( 𝐴  ·  𝑀 )  /  𝑀 )  ∈  ℤ ) )  | 
						
						
							| 16 | 
							
								9 15
							 | 
							mpbird | 
							⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑀  ∈  ℝ+ )  →  ( ( 𝐴  ·  𝑀 )  mod  𝑀 )  =  0 )  |