| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
⊢ 0 ∈ ℂ |
| 2 |
|
subdir |
⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 − 𝐴 ) · 𝐵 ) = ( ( 0 · 𝐵 ) − ( 𝐴 · 𝐵 ) ) ) |
| 3 |
1 2
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 − 𝐴 ) · 𝐵 ) = ( ( 0 · 𝐵 ) − ( 𝐴 · 𝐵 ) ) ) |
| 4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 5 |
4
|
mul02d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 0 · 𝐵 ) = 0 ) |
| 6 |
5
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 · 𝐵 ) − ( 𝐴 · 𝐵 ) ) = ( 0 − ( 𝐴 · 𝐵 ) ) ) |
| 7 |
3 6
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 0 − 𝐴 ) · 𝐵 ) = ( 0 − ( 𝐴 · 𝐵 ) ) ) |
| 8 |
|
df-neg |
⊢ - 𝐴 = ( 0 − 𝐴 ) |
| 9 |
8
|
oveq1i |
⊢ ( - 𝐴 · 𝐵 ) = ( ( 0 − 𝐴 ) · 𝐵 ) |
| 10 |
|
df-neg |
⊢ - ( 𝐴 · 𝐵 ) = ( 0 − ( 𝐴 · 𝐵 ) ) |
| 11 |
7 9 10
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |