Metamath Proof Explorer


Theorem mulneg12

Description: Swap the negative sign in a product. (Contributed by NM, 30-Jul-2004)

Ref Expression
Assertion mulneg12 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · 𝐵 ) = ( 𝐴 · - 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mulneg1 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · 𝐵 ) = - ( 𝐴 · 𝐵 ) )
2 mulneg2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) )
3 1 2 eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐴 · 𝐵 ) = ( 𝐴 · - 𝐵 ) )