Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulneg1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - 𝐵 · 𝐴 ) = - ( 𝐵 · 𝐴 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - 𝐵 · 𝐴 ) = - ( 𝐵 · 𝐴 ) ) |
| 3 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 4 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = ( - 𝐵 · 𝐴 ) ) | |
| 5 | 3 4 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = ( - 𝐵 · 𝐴 ) ) |
| 6 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
| 7 | 6 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - ( 𝐴 · 𝐵 ) = - ( 𝐵 · 𝐴 ) ) |
| 8 | 2 5 7 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) ) |