Metamath Proof Explorer


Theorem mulneg2d

Description: Product with negative is negative of product. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulm1d.1 ( 𝜑𝐴 ∈ ℂ )
mulnegd.2 ( 𝜑𝐵 ∈ ℂ )
Assertion mulneg2d ( 𝜑 → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mulm1d.1 ( 𝜑𝐴 ∈ ℂ )
2 mulnegd.2 ( 𝜑𝐵 ∈ ℂ )
3 mulneg2 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 · - 𝐵 ) = - ( 𝐴 · 𝐵 ) )