Step |
Hyp |
Ref |
Expression |
1 |
|
mulnegs1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
mulnegs1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
1
|
negsidd |
⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) |
4 |
3
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) ·s 𝐵 ) = ( 0s ·s 𝐵 ) ) |
5 |
1
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ No ) |
6 |
1 5 2
|
addsdird |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) ·s 𝐵 ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ) ) |
7 |
|
muls02 |
⊢ ( 𝐵 ∈ No → ( 0s ·s 𝐵 ) = 0s ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 0s ·s 𝐵 ) = 0s ) |
9 |
4 6 8
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ) = 0s ) |
10 |
1 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
11 |
10
|
negsidd |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) = 0s ) |
12 |
9 11
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) ) |
13 |
5 2
|
mulscld |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ∈ No ) |
14 |
10
|
negscld |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ∈ No ) |
15 |
13 14 10
|
addscan1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝐵 ) +s ( ( -us ‘ 𝐴 ) ·s 𝐵 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) ↔ ( ( -us ‘ 𝐴 ) ·s 𝐵 ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) ) |
16 |
12 15
|
mpbid |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) ·s 𝐵 ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) |