Metamath Proof Explorer


Theorem mulnegs1d

Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulnegs1d.1 ( 𝜑𝐴 No )
mulnegs1d.2 ( 𝜑𝐵 No )
Assertion mulnegs1d ( 𝜑 → ( ( -us𝐴 ) ·s 𝐵 ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 mulnegs1d.1 ( 𝜑𝐴 No )
2 mulnegs1d.2 ( 𝜑𝐵 No )
3 1 negsidd ( 𝜑 → ( 𝐴 +s ( -us𝐴 ) ) = 0s )
4 3 oveq1d ( 𝜑 → ( ( 𝐴 +s ( -us𝐴 ) ) ·s 𝐵 ) = ( 0s ·s 𝐵 ) )
5 1 negscld ( 𝜑 → ( -us𝐴 ) ∈ No )
6 1 5 2 addsdird ( 𝜑 → ( ( 𝐴 +s ( -us𝐴 ) ) ·s 𝐵 ) = ( ( 𝐴 ·s 𝐵 ) +s ( ( -us𝐴 ) ·s 𝐵 ) ) )
7 muls02 ( 𝐵 No → ( 0s ·s 𝐵 ) = 0s )
8 2 7 syl ( 𝜑 → ( 0s ·s 𝐵 ) = 0s )
9 4 6 8 3eqtr3d ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( ( -us𝐴 ) ·s 𝐵 ) ) = 0s )
10 1 2 mulscld ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No )
11 10 negsidd ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) = 0s )
12 9 11 eqtr4d ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) +s ( ( -us𝐴 ) ·s 𝐵 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) )
13 5 2 mulscld ( 𝜑 → ( ( -us𝐴 ) ·s 𝐵 ) ∈ No )
14 10 negscld ( 𝜑 → ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ∈ No )
15 13 14 10 addscan1d ( 𝜑 → ( ( ( 𝐴 ·s 𝐵 ) +s ( ( -us𝐴 ) ·s 𝐵 ) ) = ( ( 𝐴 ·s 𝐵 ) +s ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) ↔ ( ( -us𝐴 ) ·s 𝐵 ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) )
16 12 15 mpbid ( 𝜑 → ( ( -us𝐴 ) ·s 𝐵 ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) )