Description: Product with negative is negative of product. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulnegs1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
mulnegs1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
Assertion | mulnegs2d | ⊢ ( 𝜑 → ( 𝐴 ·s ( -us ‘ 𝐵 ) ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulnegs1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | mulnegs1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | 2 1 | mulnegs1d | ⊢ ( 𝜑 → ( ( -us ‘ 𝐵 ) ·s 𝐴 ) = ( -us ‘ ( 𝐵 ·s 𝐴 ) ) ) |
4 | 2 | negscld | ⊢ ( 𝜑 → ( -us ‘ 𝐵 ) ∈ No ) |
5 | 1 4 | mulscomd | ⊢ ( 𝜑 → ( 𝐴 ·s ( -us ‘ 𝐵 ) ) = ( ( -us ‘ 𝐵 ) ·s 𝐴 ) ) |
6 | 1 2 | mulscomd | ⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( 𝐵 ·s 𝐴 ) ) |
7 | 6 | fveq2d | ⊢ ( 𝜑 → ( -us ‘ ( 𝐴 ·s 𝐵 ) ) = ( -us ‘ ( 𝐵 ·s 𝐴 ) ) ) |
8 | 3 5 7 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐴 ·s ( -us ‘ 𝐵 ) ) = ( -us ‘ ( 𝐴 ·s 𝐵 ) ) ) |