Step |
Hyp |
Ref |
Expression |
1 |
|
nqerf |
⊢ [Q] : ( N × N ) ⟶ Q |
2 |
|
mulpqf |
⊢ ·pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) |
3 |
|
fco |
⊢ ( ( [Q] : ( N × N ) ⟶ Q ∧ ·pQ : ( ( N × N ) × ( N × N ) ) ⟶ ( N × N ) ) → ( [Q] ∘ ·pQ ) : ( ( N × N ) × ( N × N ) ) ⟶ Q ) |
4 |
1 2 3
|
mp2an |
⊢ ( [Q] ∘ ·pQ ) : ( ( N × N ) × ( N × N ) ) ⟶ Q |
5 |
|
elpqn |
⊢ ( 𝑥 ∈ Q → 𝑥 ∈ ( N × N ) ) |
6 |
5
|
ssriv |
⊢ Q ⊆ ( N × N ) |
7 |
|
xpss12 |
⊢ ( ( Q ⊆ ( N × N ) ∧ Q ⊆ ( N × N ) ) → ( Q × Q ) ⊆ ( ( N × N ) × ( N × N ) ) ) |
8 |
6 6 7
|
mp2an |
⊢ ( Q × Q ) ⊆ ( ( N × N ) × ( N × N ) ) |
9 |
|
fssres |
⊢ ( ( ( [Q] ∘ ·pQ ) : ( ( N × N ) × ( N × N ) ) ⟶ Q ∧ ( Q × Q ) ⊆ ( ( N × N ) × ( N × N ) ) ) → ( ( [Q] ∘ ·pQ ) ↾ ( Q × Q ) ) : ( Q × Q ) ⟶ Q ) |
10 |
4 8 9
|
mp2an |
⊢ ( ( [Q] ∘ ·pQ ) ↾ ( Q × Q ) ) : ( Q × Q ) ⟶ Q |
11 |
|
df-mq |
⊢ ·Q = ( ( [Q] ∘ ·pQ ) ↾ ( Q × Q ) ) |
12 |
11
|
feq1i |
⊢ ( ·Q : ( Q × Q ) ⟶ Q ↔ ( ( [Q] ∘ ·pQ ) ↾ ( Q × Q ) ) : ( Q × Q ) ⟶ Q ) |
13 |
10 12
|
mpbir |
⊢ ·Q : ( Q × Q ) ⟶ Q |