Step |
Hyp |
Ref |
Expression |
1 |
|
ax-mulf |
⊢ · : ( ℂ × ℂ ) ⟶ ℂ |
2 |
|
ffnov |
⊢ ( · : ( ℂ × ℂ ) ⟶ ℂ ↔ ( · Fn ( ℂ × ℂ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( 𝑥 · 𝑦 ) ∈ ℂ ) ) |
3 |
1 2
|
mpbi |
⊢ ( · Fn ( ℂ × ℂ ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℂ ( 𝑥 · 𝑦 ) ∈ ℂ ) |
4 |
3
|
simpli |
⊢ · Fn ( ℂ × ℂ ) |
5 |
|
difss |
⊢ ( ℂ ∖ { 0 } ) ⊆ ℂ |
6 |
|
xpss12 |
⊢ ( ( ( ℂ ∖ { 0 } ) ⊆ ℂ ∧ ( ℂ ∖ { 0 } ) ⊆ ℂ ) → ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⊆ ( ℂ × ℂ ) ) |
7 |
5 5 6
|
mp2an |
⊢ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⊆ ( ℂ × ℂ ) |
8 |
|
fnssres |
⊢ ( ( · Fn ( ℂ × ℂ ) ∧ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⊆ ( ℂ × ℂ ) ) → ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) |
9 |
4 7 8
|
mp2an |
⊢ ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) |
10 |
|
ovres |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
11 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
12 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
13 |
|
mulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
14 |
13
|
ad2ant2r |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ∈ ℂ ) |
15 |
|
mulne0 |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 · 𝑦 ) ≠ 0 ) |
16 |
14 15
|
jca |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) → ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) |
17 |
11 12 16
|
syl2anb |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) |
18 |
|
eldifsn |
⊢ ( ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝑥 · 𝑦 ) ∈ ℂ ∧ ( 𝑥 · 𝑦 ) ≠ 0 ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 · 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
20 |
10 19
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) |
21 |
20
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( 𝑥 ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) ∈ ( ℂ ∖ { 0 } ) |
22 |
|
ffnov |
⊢ ( ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } ) ↔ ( ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) Fn ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ∧ ∀ 𝑥 ∈ ( ℂ ∖ { 0 } ) ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( 𝑥 ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
23 |
9 21 22
|
mpbir2an |
⊢ ( · ↾ ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ) : ( ( ℂ ∖ { 0 } ) × ( ℂ ∖ { 0 } ) ) ⟶ ( ℂ ∖ { 0 } ) |