Step |
Hyp |
Ref |
Expression |
1 |
|
logdivsum.1 |
⊢ 𝐹 = ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 ) / 𝑖 ) − ( ( ( log ‘ 𝑦 ) ↑ 2 ) / 2 ) ) ) |
2 |
|
mulog2sumlem.1 |
⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐿 ) |
3 |
|
mulog2sumlem1.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
4 |
|
mulog2sumlem1.3 |
⊢ ( 𝜑 → e ≤ 𝐴 ) |
5 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
6 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℕ ) |
7 |
6
|
nnrpd |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℝ+ ) |
8 |
|
rpdivcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( 𝐴 / 𝑚 ) ∈ ℝ+ ) |
9 |
3 7 8
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑚 ) ∈ ℝ+ ) |
10 |
9
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ ( 𝐴 / 𝑚 ) ) ∈ ℝ ) |
11 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
12 |
10 11
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) ∈ ℝ ) |
13 |
5 12
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) ∈ ℝ ) |
14 |
3
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ ) |
15 |
14
|
resqcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
16 |
15
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ∈ ℝ ) |
17 |
|
emre |
⊢ γ ∈ ℝ |
18 |
|
remulcl |
⊢ ( ( γ ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( γ · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
19 |
17 14 18
|
sylancr |
⊢ ( 𝜑 → ( γ · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
20 |
|
rpsup |
⊢ sup ( ℝ+ , ℝ* , < ) = +∞ |
21 |
20
|
a1i |
⊢ ( 𝜑 → sup ( ℝ+ , ℝ* , < ) = +∞ ) |
22 |
1
|
logdivsum |
⊢ ( 𝐹 : ℝ+ ⟶ ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ( ( 𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
23 |
22
|
simp1i |
⊢ 𝐹 : ℝ+ ⟶ ℝ |
24 |
23
|
a1i |
⊢ ( 𝜑 → 𝐹 : ℝ+ ⟶ ℝ ) |
25 |
24
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ+ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
26 |
25 2
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐿 ) |
27 |
23
|
ffvelrni |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
29 |
21 26 28
|
rlimrecl |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
30 |
19 29
|
resubcld |
⊢ ( 𝜑 → ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ∈ ℝ ) |
31 |
16 30
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ∈ ℝ ) |
32 |
13 31
|
resubcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ∈ ℝ ) |
33 |
32
|
recnd |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ∈ ℂ ) |
34 |
33
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ) ∈ ℝ ) |
35 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ 𝑚 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) / 𝑚 ) ∈ ℝ ) |
36 |
14 7 35
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝐴 ) / 𝑚 ) ∈ ℝ ) |
37 |
36
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝐴 ) / 𝑚 ) ∈ ℂ ) |
38 |
5 37
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) ∈ ℂ ) |
39 |
14
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
40 |
|
readdcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ γ ∈ ℝ ) → ( ( log ‘ 𝐴 ) + γ ) ∈ ℝ ) |
41 |
14 17 40
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) + γ ) ∈ ℝ ) |
42 |
41
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) + γ ) ∈ ℂ ) |
43 |
39 42
|
mulcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ∈ ℂ ) |
44 |
38 43
|
subcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ∈ ℂ ) |
45 |
44
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) ∈ ℝ ) |
46 |
11
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℝ+ ) |
47 |
46
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
48 |
47 11
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℝ ) |
49 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
50 |
5 49
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
51 |
16
|
recnd |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ∈ ℂ ) |
52 |
29
|
recnd |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
53 |
51 52
|
addcld |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ∈ ℂ ) |
54 |
50 53
|
subcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ∈ ℂ ) |
55 |
54
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ∈ ℝ ) |
56 |
45 55
|
readdcld |
⊢ ( 𝜑 → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ∈ ℝ ) |
57 |
|
2re |
⊢ 2 ∈ ℝ |
58 |
14 3
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
59 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) → ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ∈ ℝ ) |
60 |
57 58 59
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ∈ ℝ ) |
61 |
|
relogdiv |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( log ‘ ( 𝐴 / 𝑚 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) ) |
62 |
3 7 61
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ ( 𝐴 / 𝑚 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) ) |
63 |
62
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) = ( ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) / 𝑚 ) ) |
64 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
65 |
47
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
66 |
46
|
rpcnne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
67 |
|
divsubdir |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝑚 ) ∈ ℂ ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) / 𝑚 ) = ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
68 |
64 65 66 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) / 𝑚 ) = ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
69 |
63 68
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) = ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
70 |
69
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
71 |
5 37 49
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
72 |
70 71
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
73 |
|
remulcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ γ ∈ ℝ ) → ( ( log ‘ 𝐴 ) · γ ) ∈ ℝ ) |
74 |
14 17 73
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · γ ) ∈ ℝ ) |
75 |
16 74
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) ∈ ℝ ) |
76 |
75
|
recnd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) ∈ ℂ ) |
77 |
76 51
|
pncand |
⊢ ( 𝜑 → ( ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) = ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) ) |
78 |
17
|
recni |
⊢ γ ∈ ℂ |
79 |
78
|
a1i |
⊢ ( 𝜑 → γ ∈ ℂ ) |
80 |
39 39 79
|
adddid |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) = ( ( ( log ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) + ( ( log ‘ 𝐴 ) · γ ) ) ) |
81 |
15
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
82 |
81
|
2halvesd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) = ( ( log ‘ 𝐴 ) ↑ 2 ) ) |
83 |
39
|
sqvald |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) ↑ 2 ) = ( ( log ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) |
84 |
82 83
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) = ( ( log ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) |
85 |
84
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( log ‘ 𝐴 ) · γ ) ) = ( ( ( log ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) + ( ( log ‘ 𝐴 ) · γ ) ) ) |
86 |
74
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · γ ) ∈ ℂ ) |
87 |
51 51 86
|
add32d |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( log ‘ 𝐴 ) · γ ) ) = ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
88 |
80 85 87
|
3eqtr2d |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) = ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
89 |
88
|
oveq1d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) = ( ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
90 |
|
mulcom |
⊢ ( ( γ ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( γ · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · γ ) ) |
91 |
78 39 90
|
sylancr |
⊢ ( 𝜑 → ( γ · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · γ ) ) |
92 |
91
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( γ · ( log ‘ 𝐴 ) ) ) = ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) ) |
93 |
77 89 92
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( γ · ( log ‘ 𝐴 ) ) ) = ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( γ · ( log ‘ 𝐴 ) ) ) − 𝐿 ) = ( ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − 𝐿 ) ) |
95 |
91 86
|
eqeltrd |
⊢ ( 𝜑 → ( γ · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
96 |
51 95 52
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( γ · ( log ‘ 𝐴 ) ) ) − 𝐿 ) = ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) |
97 |
43 51 52
|
subsub4d |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − 𝐿 ) = ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) |
98 |
94 96 97
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) = ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) |
99 |
72 98
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) |
100 |
38 50 43 53
|
sub4d |
⊢ ( 𝜑 → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) |
101 |
99 100
|
eqtrd |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) |
102 |
101
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ) = ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ) |
103 |
44 54
|
abs2dif2d |
⊢ ( 𝜑 → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ≤ ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ) |
104 |
102 103
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ) ≤ ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ) |
105 |
|
harmonicbnd4 |
⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ) |
106 |
3 105
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ) |
107 |
11
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
108 |
5 107
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
109 |
108 41
|
resubcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ∈ ℝ ) |
110 |
109
|
recnd |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ∈ ℂ ) |
111 |
110
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ∈ ℝ ) |
112 |
3
|
rprecred |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ ) |
113 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
114 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
115 |
|
0lt1 |
⊢ 0 < 1 |
116 |
115
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
117 |
|
loge |
⊢ ( log ‘ e ) = 1 |
118 |
|
epr |
⊢ e ∈ ℝ+ |
119 |
|
logleb |
⊢ ( ( e ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( e ≤ 𝐴 ↔ ( log ‘ e ) ≤ ( log ‘ 𝐴 ) ) ) |
120 |
118 3 119
|
sylancr |
⊢ ( 𝜑 → ( e ≤ 𝐴 ↔ ( log ‘ e ) ≤ ( log ‘ 𝐴 ) ) ) |
121 |
4 120
|
mpbid |
⊢ ( 𝜑 → ( log ‘ e ) ≤ ( log ‘ 𝐴 ) ) |
122 |
117 121
|
eqbrtrrid |
⊢ ( 𝜑 → 1 ≤ ( log ‘ 𝐴 ) ) |
123 |
113 114 14 116 122
|
ltletrd |
⊢ ( 𝜑 → 0 < ( log ‘ 𝐴 ) ) |
124 |
|
lemul2 |
⊢ ( ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ∧ ( ( log ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐴 ) ) ) → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ≤ ( ( log ‘ 𝐴 ) · ( 1 / 𝐴 ) ) ) ) |
125 |
111 112 14 123 124
|
syl112anc |
⊢ ( 𝜑 → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ≤ ( ( log ‘ 𝐴 ) · ( 1 / 𝐴 ) ) ) ) |
126 |
106 125
|
mpbid |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ≤ ( ( log ‘ 𝐴 ) · ( 1 / 𝐴 ) ) ) |
127 |
46
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℂ ) |
128 |
46
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ≠ 0 ) |
129 |
64 127 128
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝐴 ) / 𝑚 ) = ( ( log ‘ 𝐴 ) · ( 1 / 𝑚 ) ) ) |
130 |
129
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) · ( 1 / 𝑚 ) ) ) |
131 |
107
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
132 |
5 39 131
|
fsummulc2 |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) · ( 1 / 𝑚 ) ) ) |
133 |
130 132
|
eqtr4d |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) = ( ( log ‘ 𝐴 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) ) |
134 |
133
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) = ( ( ( log ‘ 𝐴 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) |
135 |
5 131
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
136 |
39 135 42
|
subdid |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) = ( ( ( log ‘ 𝐴 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) |
137 |
134 136
|
eqtr4d |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) = ( ( log ‘ 𝐴 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) |
138 |
137
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) = ( abs ‘ ( ( log ‘ 𝐴 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ) |
139 |
135 42
|
subcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ∈ ℂ ) |
140 |
39 139
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ( log ‘ 𝐴 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) = ( ( abs ‘ ( log ‘ 𝐴 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ) |
141 |
113 14 123
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝐴 ) ) |
142 |
14 141
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( log ‘ 𝐴 ) ) = ( log ‘ 𝐴 ) ) |
143 |
142
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( log ‘ 𝐴 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) = ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ) |
144 |
138 140 143
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) = ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ) |
145 |
3
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
146 |
3
|
rpne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
147 |
39 145 146
|
divrecd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) / 𝐴 ) = ( ( log ‘ 𝐴 ) · ( 1 / 𝐴 ) ) ) |
148 |
126 144 147
|
3brtr4d |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
149 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( log ‘ 𝑖 ) = ( log ‘ 𝑚 ) ) |
150 |
|
id |
⊢ ( 𝑖 = 𝑚 → 𝑖 = 𝑚 ) |
151 |
149 150
|
oveq12d |
⊢ ( 𝑖 = 𝑚 → ( ( log ‘ 𝑖 ) / 𝑖 ) = ( ( log ‘ 𝑚 ) / 𝑚 ) ) |
152 |
151
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 ) / 𝑖 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) |
153 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( ⌊ ‘ 𝑦 ) = ( ⌊ ‘ 𝐴 ) ) |
154 |
153
|
oveq2d |
⊢ ( 𝑦 = 𝐴 → ( 1 ... ( ⌊ ‘ 𝑦 ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
155 |
154
|
sumeq1d |
⊢ ( 𝑦 = 𝐴 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) |
156 |
152 155
|
syl5eq |
⊢ ( 𝑦 = 𝐴 → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 ) / 𝑖 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) |
157 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( log ‘ 𝑦 ) = ( log ‘ 𝐴 ) ) |
158 |
157
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( log ‘ 𝑦 ) ↑ 2 ) = ( ( log ‘ 𝐴 ) ↑ 2 ) ) |
159 |
158
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( log ‘ 𝑦 ) ↑ 2 ) / 2 ) = ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) |
160 |
156 159
|
oveq12d |
⊢ ( 𝑦 = 𝐴 → ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 ) / 𝑖 ) − ( ( ( log ‘ 𝑦 ) ↑ 2 ) / 2 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
161 |
|
ovex |
⊢ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ∈ V |
162 |
160 1 161
|
fvmpt |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐹 ‘ 𝐴 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
163 |
3 162
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − 𝐿 ) ) |
165 |
50 51 52
|
subsub4d |
⊢ ( 𝜑 → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − 𝐿 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) |
166 |
164 165
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) |
167 |
166
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) ) = ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) |
168 |
22
|
simp3i |
⊢ ( ( 𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
169 |
2 3 4 168
|
syl3anc |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
170 |
167 169
|
eqbrtrrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
171 |
45 55 58 58 148 170
|
le2addd |
⊢ ( 𝜑 → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ≤ ( ( ( log ‘ 𝐴 ) / 𝐴 ) + ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
172 |
58
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℂ ) |
173 |
172
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) = ( ( ( log ‘ 𝐴 ) / 𝐴 ) + ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
174 |
171 173
|
breqtrrd |
⊢ ( 𝜑 → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ≤ ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
175 |
34 56 60 104 174
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ) ≤ ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |