| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logdivsum.1 |
⊢ 𝐹 = ( 𝑦 ∈ ℝ+ ↦ ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 ) / 𝑖 ) − ( ( ( log ‘ 𝑦 ) ↑ 2 ) / 2 ) ) ) |
| 2 |
|
mulog2sumlem.1 |
⊢ ( 𝜑 → 𝐹 ⇝𝑟 𝐿 ) |
| 3 |
|
mulog2sumlem1.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 4 |
|
mulog2sumlem1.3 |
⊢ ( 𝜑 → e ≤ 𝐴 ) |
| 5 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
| 6 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℕ ) |
| 7 |
6
|
nnrpd |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℝ+ ) |
| 8 |
|
rpdivcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( 𝐴 / 𝑚 ) ∈ ℝ+ ) |
| 9 |
3 7 8
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑚 ) ∈ ℝ+ ) |
| 10 |
9
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ ( 𝐴 / 𝑚 ) ) ∈ ℝ ) |
| 11 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
| 12 |
10 11
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) ∈ ℝ ) |
| 13 |
5 12
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) ∈ ℝ ) |
| 14 |
3
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 15 |
14
|
resqcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 16 |
15
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ∈ ℝ ) |
| 17 |
|
emre |
⊢ γ ∈ ℝ |
| 18 |
|
remulcl |
⊢ ( ( γ ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( γ · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 19 |
17 14 18
|
sylancr |
⊢ ( 𝜑 → ( γ · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 20 |
|
rpsup |
⊢ sup ( ℝ+ , ℝ* , < ) = +∞ |
| 21 |
20
|
a1i |
⊢ ( 𝜑 → sup ( ℝ+ , ℝ* , < ) = +∞ ) |
| 22 |
1
|
logdivsum |
⊢ ( 𝐹 : ℝ+ ⟶ ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ( ( 𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 23 |
22
|
simp1i |
⊢ 𝐹 : ℝ+ ⟶ ℝ |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → 𝐹 : ℝ+ ⟶ ℝ ) |
| 25 |
24
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ+ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 26 |
25 2
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐿 ) |
| 27 |
23
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 29 |
21 26 28
|
rlimrecl |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 30 |
19 29
|
resubcld |
⊢ ( 𝜑 → ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ∈ ℝ ) |
| 31 |
16 30
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ∈ ℝ ) |
| 32 |
13 31
|
resubcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ∈ ℝ ) |
| 33 |
32
|
recnd |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ∈ ℂ ) |
| 34 |
33
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ) ∈ ℝ ) |
| 35 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ 𝑚 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) / 𝑚 ) ∈ ℝ ) |
| 36 |
14 7 35
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝐴 ) / 𝑚 ) ∈ ℝ ) |
| 37 |
36
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝐴 ) / 𝑚 ) ∈ ℂ ) |
| 38 |
5 37
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) ∈ ℂ ) |
| 39 |
14
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 40 |
|
readdcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ γ ∈ ℝ ) → ( ( log ‘ 𝐴 ) + γ ) ∈ ℝ ) |
| 41 |
14 17 40
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) + γ ) ∈ ℝ ) |
| 42 |
41
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) + γ ) ∈ ℂ ) |
| 43 |
39 42
|
mulcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ∈ ℂ ) |
| 44 |
38 43
|
subcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ∈ ℂ ) |
| 45 |
44
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) ∈ ℝ ) |
| 46 |
11
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℝ+ ) |
| 47 |
46
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 48 |
47 11
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℝ ) |
| 49 |
48
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
| 50 |
5 49
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
| 51 |
16
|
recnd |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ∈ ℂ ) |
| 52 |
29
|
recnd |
⊢ ( 𝜑 → 𝐿 ∈ ℂ ) |
| 53 |
51 52
|
addcld |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ∈ ℂ ) |
| 54 |
50 53
|
subcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ∈ ℂ ) |
| 55 |
54
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ∈ ℝ ) |
| 56 |
45 55
|
readdcld |
⊢ ( 𝜑 → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ∈ ℝ ) |
| 57 |
|
2re |
⊢ 2 ∈ ℝ |
| 58 |
14 3
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
| 59 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) → ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ∈ ℝ ) |
| 60 |
57 58 59
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ∈ ℝ ) |
| 61 |
|
relogdiv |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( log ‘ ( 𝐴 / 𝑚 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) ) |
| 62 |
3 7 61
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ ( 𝐴 / 𝑚 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) ) |
| 63 |
62
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) = ( ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) / 𝑚 ) ) |
| 64 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 65 |
47
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
| 66 |
46
|
rpcnne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
| 67 |
|
divsubdir |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝑚 ) ∈ ℂ ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) / 𝑚 ) = ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 68 |
64 65 66 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( log ‘ 𝐴 ) − ( log ‘ 𝑚 ) ) / 𝑚 ) = ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 69 |
63 68
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) = ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 70 |
69
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 71 |
5 37 49
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 72 |
70 71
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 73 |
|
remulcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ γ ∈ ℝ ) → ( ( log ‘ 𝐴 ) · γ ) ∈ ℝ ) |
| 74 |
14 17 73
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · γ ) ∈ ℝ ) |
| 75 |
16 74
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) ∈ ℝ ) |
| 76 |
75
|
recnd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) ∈ ℂ ) |
| 77 |
76 51
|
pncand |
⊢ ( 𝜑 → ( ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) = ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) ) |
| 78 |
17
|
recni |
⊢ γ ∈ ℂ |
| 79 |
78
|
a1i |
⊢ ( 𝜑 → γ ∈ ℂ ) |
| 80 |
39 39 79
|
adddid |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) = ( ( ( log ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) + ( ( log ‘ 𝐴 ) · γ ) ) ) |
| 81 |
15
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 82 |
81
|
2halvesd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) = ( ( log ‘ 𝐴 ) ↑ 2 ) ) |
| 83 |
39
|
sqvald |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) ↑ 2 ) = ( ( log ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) |
| 84 |
82 83
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) = ( ( log ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) |
| 85 |
84
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( log ‘ 𝐴 ) · γ ) ) = ( ( ( log ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) + ( ( log ‘ 𝐴 ) · γ ) ) ) |
| 86 |
74
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · γ ) ∈ ℂ ) |
| 87 |
51 51 86
|
add32d |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) + ( ( log ‘ 𝐴 ) · γ ) ) = ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
| 88 |
80 85 87
|
3eqtr2d |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) = ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
| 89 |
88
|
oveq1d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) = ( ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) + ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
| 90 |
|
mulcom |
⊢ ( ( γ ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( γ · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · γ ) ) |
| 91 |
78 39 90
|
sylancr |
⊢ ( 𝜑 → ( γ · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · γ ) ) |
| 92 |
91
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( γ · ( log ‘ 𝐴 ) ) ) = ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( log ‘ 𝐴 ) · γ ) ) ) |
| 93 |
77 89 92
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( γ · ( log ‘ 𝐴 ) ) ) = ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
| 94 |
93
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( γ · ( log ‘ 𝐴 ) ) ) − 𝐿 ) = ( ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − 𝐿 ) ) |
| 95 |
91 86
|
eqeltrd |
⊢ ( 𝜑 → ( γ · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 96 |
51 95 52
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( γ · ( log ‘ 𝐴 ) ) ) − 𝐿 ) = ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) |
| 97 |
43 51 52
|
subsub4d |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − 𝐿 ) = ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) |
| 98 |
94 96 97
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) = ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) |
| 99 |
72 98
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) |
| 100 |
38 50 43 53
|
sub4d |
⊢ ( 𝜑 → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) − ( ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) |
| 101 |
99 100
|
eqtrd |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) |
| 102 |
101
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ) = ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ) |
| 103 |
44 54
|
abs2dif2d |
⊢ ( 𝜑 → ( abs ‘ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) − ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ≤ ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ) |
| 104 |
102 103
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ) ≤ ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ) |
| 105 |
|
harmonicbnd4 |
⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ) |
| 106 |
3 105
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ) |
| 107 |
11
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 108 |
5 107
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 109 |
108 41
|
resubcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ∈ ℝ ) |
| 110 |
109
|
recnd |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ∈ ℂ ) |
| 111 |
110
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ∈ ℝ ) |
| 112 |
3
|
rprecred |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℝ ) |
| 113 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 114 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 115 |
|
0lt1 |
⊢ 0 < 1 |
| 116 |
115
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 117 |
|
loge |
⊢ ( log ‘ e ) = 1 |
| 118 |
|
epr |
⊢ e ∈ ℝ+ |
| 119 |
|
logleb |
⊢ ( ( e ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( e ≤ 𝐴 ↔ ( log ‘ e ) ≤ ( log ‘ 𝐴 ) ) ) |
| 120 |
118 3 119
|
sylancr |
⊢ ( 𝜑 → ( e ≤ 𝐴 ↔ ( log ‘ e ) ≤ ( log ‘ 𝐴 ) ) ) |
| 121 |
4 120
|
mpbid |
⊢ ( 𝜑 → ( log ‘ e ) ≤ ( log ‘ 𝐴 ) ) |
| 122 |
117 121
|
eqbrtrrid |
⊢ ( 𝜑 → 1 ≤ ( log ‘ 𝐴 ) ) |
| 123 |
113 114 14 116 122
|
ltletrd |
⊢ ( 𝜑 → 0 < ( log ‘ 𝐴 ) ) |
| 124 |
|
lemul2 |
⊢ ( ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ∧ ( ( log ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐴 ) ) ) → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ≤ ( ( log ‘ 𝐴 ) · ( 1 / 𝐴 ) ) ) ) |
| 125 |
111 112 14 123 124
|
syl112anc |
⊢ ( 𝜑 → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ≤ ( ( log ‘ 𝐴 ) · ( 1 / 𝐴 ) ) ) ) |
| 126 |
106 125
|
mpbid |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ≤ ( ( log ‘ 𝐴 ) · ( 1 / 𝐴 ) ) ) |
| 127 |
46
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℂ ) |
| 128 |
46
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ≠ 0 ) |
| 129 |
64 127 128
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝐴 ) / 𝑚 ) = ( ( log ‘ 𝐴 ) · ( 1 / 𝑚 ) ) ) |
| 130 |
129
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) · ( 1 / 𝑚 ) ) ) |
| 131 |
107
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 132 |
5 39 131
|
fsummulc2 |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) · ( 1 / 𝑚 ) ) ) |
| 133 |
130 132
|
eqtr4d |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) = ( ( log ‘ 𝐴 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) ) |
| 134 |
133
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) = ( ( ( log ‘ 𝐴 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) |
| 135 |
5 131
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
| 136 |
39 135 42
|
subdid |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) = ( ( ( log ‘ 𝐴 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) |
| 137 |
134 136
|
eqtr4d |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) = ( ( log ‘ 𝐴 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) |
| 138 |
137
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) = ( abs ‘ ( ( log ‘ 𝐴 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ) |
| 139 |
135 42
|
subcld |
⊢ ( 𝜑 → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ∈ ℂ ) |
| 140 |
39 139
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( ( log ‘ 𝐴 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) = ( ( abs ‘ ( log ‘ 𝐴 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ) |
| 141 |
113 14 123
|
ltled |
⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝐴 ) ) |
| 142 |
14 141
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( log ‘ 𝐴 ) ) = ( log ‘ 𝐴 ) ) |
| 143 |
142
|
oveq1d |
⊢ ( 𝜑 → ( ( abs ‘ ( log ‘ 𝐴 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) = ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ) |
| 144 |
138 140 143
|
3eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) = ( ( log ‘ 𝐴 ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( ( log ‘ 𝐴 ) + γ ) ) ) ) ) |
| 145 |
3
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 146 |
3
|
rpne0d |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 147 |
39 145 146
|
divrecd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) / 𝐴 ) = ( ( log ‘ 𝐴 ) · ( 1 / 𝐴 ) ) ) |
| 148 |
126 144 147
|
3brtr4d |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
| 149 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( log ‘ 𝑖 ) = ( log ‘ 𝑚 ) ) |
| 150 |
|
id |
⊢ ( 𝑖 = 𝑚 → 𝑖 = 𝑚 ) |
| 151 |
149 150
|
oveq12d |
⊢ ( 𝑖 = 𝑚 → ( ( log ‘ 𝑖 ) / 𝑖 ) = ( ( log ‘ 𝑚 ) / 𝑚 ) ) |
| 152 |
151
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 ) / 𝑖 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) |
| 153 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( ⌊ ‘ 𝑦 ) = ( ⌊ ‘ 𝐴 ) ) |
| 154 |
153
|
oveq2d |
⊢ ( 𝑦 = 𝐴 → ( 1 ... ( ⌊ ‘ 𝑦 ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 155 |
154
|
sumeq1d |
⊢ ( 𝑦 = 𝐴 → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) |
| 156 |
152 155
|
eqtrid |
⊢ ( 𝑦 = 𝐴 → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 ) / 𝑖 ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) ) |
| 157 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( log ‘ 𝑦 ) = ( log ‘ 𝐴 ) ) |
| 158 |
157
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( log ‘ 𝑦 ) ↑ 2 ) = ( ( log ‘ 𝐴 ) ↑ 2 ) ) |
| 159 |
158
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( ( log ‘ 𝑦 ) ↑ 2 ) / 2 ) = ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) |
| 160 |
156 159
|
oveq12d |
⊢ ( 𝑦 = 𝐴 → ( Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( log ‘ 𝑖 ) / 𝑖 ) − ( ( ( log ‘ 𝑦 ) ↑ 2 ) / 2 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
| 161 |
|
ovex |
⊢ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ∈ V |
| 162 |
160 1 161
|
fvmpt |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐹 ‘ 𝐴 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
| 163 |
3 162
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) ) |
| 164 |
163
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) = ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − 𝐿 ) ) |
| 165 |
50 51 52
|
subsub4d |
⊢ ( 𝜑 → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) ) − 𝐿 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) |
| 166 |
164 165
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) |
| 167 |
166
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) ) = ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) |
| 168 |
22
|
simp3i |
⊢ ( ( 𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤ 𝐴 ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
| 169 |
2 3 4 168
|
syl3anc |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − 𝐿 ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
| 170 |
167 169
|
eqbrtrrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ≤ ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
| 171 |
45 55 58 58 148 170
|
le2addd |
⊢ ( 𝜑 → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ≤ ( ( ( log ‘ 𝐴 ) / 𝐴 ) + ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 172 |
58
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℂ ) |
| 173 |
172
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) = ( ( ( log ‘ 𝐴 ) / 𝐴 ) + ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 174 |
171 173
|
breqtrrd |
⊢ ( 𝜑 → ( ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝐴 ) / 𝑚 ) − ( ( log ‘ 𝐴 ) · ( ( log ‘ 𝐴 ) + γ ) ) ) ) + ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑚 ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + 𝐿 ) ) ) ) ≤ ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
| 175 |
34 56 60 104 174
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ ( 𝐴 / 𝑚 ) ) / 𝑚 ) − ( ( ( ( log ‘ 𝐴 ) ↑ 2 ) / 2 ) + ( ( γ · ( log ‘ 𝐴 ) ) − 𝐿 ) ) ) ) ≤ ( 2 · ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |