| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 3 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ) |
| 4 |
1 2 3
|
mp2an |
⊢ ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) |
| 5 |
|
1cnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℂ ) |
| 6 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 7 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 9 |
|
mucl |
⊢ ( 𝑛 ∈ ℕ → ( μ ‘ 𝑛 ) ∈ ℤ ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
| 11 |
10
|
zred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ ) |
| 12 |
11 8
|
nndivred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 13 |
7
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
| 14 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 15 |
13 14
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 16 |
15
|
relogcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 17 |
12 16
|
remulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 18 |
17
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 19 |
6 18
|
fsumcl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 20 |
19
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 21 |
|
mulogsumlem |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) |
| 22 |
|
sumex |
⊢ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ V |
| 23 |
22
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ V ) |
| 24 |
21
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ) |
| 25 |
23 24
|
o1mptrcl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
| 26 |
5 20
|
subcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
| 27 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 28 |
|
fz1ssnn |
⊢ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ℕ |
| 29 |
28
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ℕ ) |
| 30 |
29
|
sselda |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 31 |
30 9
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
| 32 |
31
|
zred |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ ) |
| 33 |
32 30
|
nndivred |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 35 |
|
fzfid |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ) |
| 36 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
| 37 |
36
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 38 |
37
|
nnrpd |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
| 39 |
38
|
rpcnne0d |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
| 40 |
|
reccl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 41 |
39 40
|
syl |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 42 |
35 41
|
fsumcl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
| 43 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 𝑥 ∈ ℝ+ ) |
| 44 |
43 13 14
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 45 |
44
|
relogcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 46 |
45
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
| 47 |
34 42 46
|
subdid |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 48 |
47
|
sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 49 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 50 |
34 42
|
mulcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) ∈ ℂ ) |
| 51 |
18
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 52 |
49 50 51
|
fsumsub |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 53 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 · 𝑚 ) → ( 1 / 𝑘 ) = ( 1 / ( 𝑛 · 𝑚 ) ) ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑘 = ( 𝑛 · 𝑚 ) → ( ( μ ‘ 𝑛 ) · ( 1 / 𝑘 ) ) = ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) ) |
| 55 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 57 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ⊆ ℕ |
| 58 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) |
| 59 |
57 58
|
sselid |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → 𝑛 ∈ ℕ ) |
| 60 |
59 9
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
| 61 |
60
|
zcnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
| 62 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ ℕ ) |
| 63 |
62
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑘 ∈ ℕ ) |
| 64 |
63
|
nnrecred |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 65 |
64
|
recnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 66 |
65
|
adantrr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 67 |
61 66
|
mulcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∧ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ) ) → ( ( μ ‘ 𝑛 ) · ( 1 / 𝑘 ) ) ∈ ℂ ) |
| 68 |
54 56 67
|
dvdsflsumcom |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ( ( μ ‘ 𝑛 ) · ( 1 / 𝑘 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) ) |
| 69 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 1 / 𝑘 ) = ( 1 / 1 ) ) |
| 70 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 71 |
69 70
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 1 / 𝑘 ) = 1 ) |
| 72 |
|
flge1nn |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
| 73 |
55 72
|
sylan |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
| 74 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 75 |
73 74
|
eleqtrdi |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 76 |
|
eluzfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → 1 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 78 |
71 49 29 77 65
|
musumsum |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑛 ∈ { 𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑘 } ( ( μ ‘ 𝑛 ) · ( 1 / 𝑘 ) ) = 1 ) |
| 79 |
31
|
zcnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
| 81 |
30
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 82 |
81
|
nnrpd |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
| 83 |
82
|
rpcnne0d |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
| 84 |
|
divdiv1 |
⊢ ( ( ( μ ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) / 𝑚 ) = ( ( μ ‘ 𝑛 ) / ( 𝑛 · 𝑚 ) ) ) |
| 85 |
80 83 39 84
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) / 𝑚 ) = ( ( μ ‘ 𝑛 ) / ( 𝑛 · 𝑚 ) ) ) |
| 86 |
34
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 87 |
37
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℂ ) |
| 88 |
37
|
nnne0d |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ≠ 0 ) |
| 89 |
86 87 88
|
divrecd |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) / 𝑚 ) = ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( 1 / 𝑚 ) ) ) |
| 90 |
|
nnmulcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ ) → ( 𝑛 · 𝑚 ) ∈ ℕ ) |
| 91 |
30 36 90
|
syl2an |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑛 · 𝑚 ) ∈ ℕ ) |
| 92 |
91
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑛 · 𝑚 ) ∈ ℂ ) |
| 93 |
91
|
nnne0d |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 𝑛 · 𝑚 ) ≠ 0 ) |
| 94 |
80 92 93
|
divrecd |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( μ ‘ 𝑛 ) / ( 𝑛 · 𝑚 ) ) = ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) ) |
| 95 |
85 89 94
|
3eqtr3rd |
⊢ ( ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) = ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( 1 / 𝑚 ) ) ) |
| 96 |
95
|
sumeq2dv |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( 1 / 𝑚 ) ) ) |
| 97 |
35 34 41
|
fsummulc2 |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( 1 / 𝑚 ) ) ) |
| 98 |
96 97
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) = ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) ) |
| 99 |
98
|
sumeq2dv |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( ( μ ‘ 𝑛 ) · ( 1 / ( 𝑛 · 𝑚 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) ) |
| 100 |
68 78 99
|
3eqtr3rd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) = 1 ) |
| 101 |
100
|
oveq1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 102 |
48 52 101
|
3eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 103 |
102
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) = ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) |
| 104 |
25 26 27 103
|
o1eq |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ) ) |
| 105 |
21 104
|
mpbii |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( 1 − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ) |
| 106 |
5 20 105
|
o1dif |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ 𝑂(1) ) ) |
| 107 |
4 106
|
mpbii |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ 𝑂(1) ) |
| 108 |
107
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ 𝑂(1) |