| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 2 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 4 |
|
mucl |
⊢ ( 𝑛 ∈ ℕ → ( μ ‘ 𝑛 ) ∈ ℤ ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
| 6 |
5
|
zred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ ) |
| 7 |
6 3
|
nndivred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 9 |
1 8
|
fsumcl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 10 |
9
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 11 |
|
emre |
⊢ γ ∈ ℝ |
| 12 |
11
|
recni |
⊢ γ ∈ ℂ |
| 13 |
12
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → γ ∈ ℂ ) |
| 14 |
|
mudivsum |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) |
| 15 |
14
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) ) |
| 16 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 17 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ γ ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ γ ) ∈ 𝑂(1) ) |
| 18 |
16 12 17
|
mp2an |
⊢ ( 𝑥 ∈ ℝ+ ↦ γ ) ∈ 𝑂(1) |
| 19 |
18
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ γ ) ∈ 𝑂(1) ) |
| 20 |
10 13 15 19
|
o1mul2 |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ∈ 𝑂(1) ) |
| 21 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ) |
| 22 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
| 23 |
22
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 24 |
23
|
nnrecred |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 25 |
21 24
|
fsumrecl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 26 |
2
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
| 27 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 28 |
26 27
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 29 |
28
|
relogcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 30 |
25 29
|
resubcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 31 |
7 30
|
remulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 32 |
1 31
|
fsumrecl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
| 33 |
32
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
| 34 |
33
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
| 35 |
|
mulcl |
⊢ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ∧ γ ∈ ℂ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
| 36 |
9 12 35
|
sylancl |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
| 37 |
36
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
| 38 |
|
nnrecre |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℂ ) |
| 40 |
23 39
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 41 |
21 40
|
fsumcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
| 42 |
29
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
| 43 |
41 42
|
subcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
| 44 |
8 43
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
| 45 |
|
mulcl |
⊢ ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ∧ γ ∈ ℂ ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
| 46 |
8 12 45
|
sylancl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
| 47 |
1 44 46
|
fsumsub |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
| 48 |
12
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → γ ∈ ℂ ) |
| 49 |
41 42 48
|
subsub4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) − γ ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) |
| 50 |
49
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) − γ ) ) = ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) |
| 51 |
8 43 48
|
subdid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) − γ ) ) = ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
| 52 |
50 51
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) = ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
| 53 |
52
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
| 54 |
12
|
a1i |
⊢ ( 𝑥 ∈ ℝ+ → γ ∈ ℂ ) |
| 55 |
1 54 8
|
fsummulc1 |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
| 57 |
47 53 56
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
| 58 |
57
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
| 59 |
16
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
| 60 |
42 48
|
addcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ∈ ℂ ) |
| 61 |
41 60
|
subcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ∈ ℂ ) |
| 62 |
8 61
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ∈ ℂ ) |
| 63 |
1 62
|
fsumcl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ∈ ℂ ) |
| 64 |
63
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ∈ ℂ ) |
| 65 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 66 |
63
|
abscld |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ∈ ℝ ) |
| 67 |
62
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ∈ ℝ ) |
| 68 |
1 67
|
fsumrecl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ∈ ℝ ) |
| 69 |
|
1red |
⊢ ( 𝑥 ∈ ℝ+ → 1 ∈ ℝ ) |
| 70 |
1 62
|
fsumabs |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ) |
| 71 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 72 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 73 |
71 72
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 74 |
73
|
nn0red |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 75 |
|
rerpdivcl |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 76 |
74 75
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 77 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 79 |
78
|
rpred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 80 |
8
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
| 81 |
3
|
nnrecred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 82 |
61
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ∈ ℝ ) |
| 83 |
|
id |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ+ ) |
| 84 |
|
rpdivcl |
⊢ ( ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑛 / 𝑥 ) ∈ ℝ+ ) |
| 85 |
26 83 84
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 / 𝑥 ) ∈ ℝ+ ) |
| 86 |
85
|
rpred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 / 𝑥 ) ∈ ℝ ) |
| 87 |
8
|
absge0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ) |
| 88 |
61
|
absge0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) |
| 89 |
6
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
| 90 |
3
|
nncnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
| 91 |
3
|
nnne0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
| 92 |
89 90 91
|
absdivd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) = ( ( abs ‘ ( μ ‘ 𝑛 ) ) / ( abs ‘ 𝑛 ) ) ) |
| 93 |
3
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 94 |
|
rprege0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ) |
| 95 |
93 94
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ) |
| 96 |
|
absid |
⊢ ( ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
| 97 |
95 96
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
| 98 |
97
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑛 ) ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ ( μ ‘ 𝑛 ) ) / 𝑛 ) ) |
| 99 |
92 98
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) = ( ( abs ‘ ( μ ‘ 𝑛 ) ) / 𝑛 ) ) |
| 100 |
89
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑛 ) ) ∈ ℝ ) |
| 101 |
|
1red |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
| 102 |
|
mule1 |
⊢ ( 𝑛 ∈ ℕ → ( abs ‘ ( μ ‘ 𝑛 ) ) ≤ 1 ) |
| 103 |
3 102
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑛 ) ) ≤ 1 ) |
| 104 |
100 101 93 103
|
lediv1dd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑛 ) ) / 𝑛 ) ≤ ( 1 / 𝑛 ) ) |
| 105 |
99 104
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ≤ ( 1 / 𝑛 ) ) |
| 106 |
|
harmonicbnd4 |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ+ → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ≤ ( 1 / ( 𝑥 / 𝑛 ) ) ) |
| 107 |
28 106
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ≤ ( 1 / ( 𝑥 / 𝑛 ) ) ) |
| 108 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 110 |
|
rpcnne0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
| 111 |
93 110
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
| 112 |
|
recdiv |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( 1 / ( 𝑥 / 𝑛 ) ) = ( 𝑛 / 𝑥 ) ) |
| 113 |
109 111 112
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( 𝑥 / 𝑛 ) ) = ( 𝑛 / 𝑥 ) ) |
| 114 |
107 113
|
breqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ≤ ( 𝑛 / 𝑥 ) ) |
| 115 |
80 81 82 86 87 88 105 114
|
lemul12ad |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ ( ( 1 / 𝑛 ) · ( 𝑛 / 𝑥 ) ) ) |
| 116 |
8 61
|
absmuld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) = ( ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ) |
| 117 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℂ ) |
| 118 |
|
dmdcan |
⊢ ( ( ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ 1 ∈ ℂ ) → ( ( 𝑛 / 𝑥 ) · ( 1 / 𝑛 ) ) = ( 1 / 𝑥 ) ) |
| 119 |
111 109 117 118
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 / 𝑥 ) · ( 1 / 𝑛 ) ) = ( 1 / 𝑥 ) ) |
| 120 |
85
|
rpcnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 / 𝑥 ) ∈ ℂ ) |
| 121 |
81
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 122 |
120 121
|
mulcomd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 / 𝑥 ) · ( 1 / 𝑛 ) ) = ( ( 1 / 𝑛 ) · ( 𝑛 / 𝑥 ) ) ) |
| 123 |
119 122
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑥 ) = ( ( 1 / 𝑛 ) · ( 𝑛 / 𝑥 ) ) ) |
| 124 |
115 116 123
|
3brtr4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ ( 1 / 𝑥 ) ) |
| 125 |
1 67 79 124
|
fsumle |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) ) |
| 126 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 127 |
73 126
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
| 128 |
127
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) = ( ( ⌊ ‘ 𝑥 ) · ( 1 / 𝑥 ) ) ) |
| 129 |
77
|
rpcnd |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℂ ) |
| 130 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ ( 1 / 𝑥 ) ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) ) |
| 131 |
1 129 130
|
syl2anc |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) ) |
| 132 |
73
|
nn0cnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℂ ) |
| 133 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
| 134 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
| 135 |
132 133 134
|
divrecd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) = ( ( ⌊ ‘ 𝑥 ) · ( 1 / 𝑥 ) ) ) |
| 136 |
128 131 135
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ) |
| 137 |
125 136
|
breqtrd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ) |
| 138 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 139 |
|
flle |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 140 |
138 139
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
| 141 |
133
|
mulridd |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 · 1 ) = 𝑥 ) |
| 142 |
140 141
|
breqtrrd |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) |
| 143 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 144 |
138 143
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
| 145 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 146 |
|
ledivmul |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ↔ ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) ) |
| 147 |
144 69 145 146
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ↔ ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) ) |
| 148 |
142 147
|
mpbird |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ) |
| 149 |
68 76 69 137 148
|
letrd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ 1 ) |
| 150 |
66 68 69 70 149
|
letrd |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ 1 ) |
| 151 |
150
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ 1 ) |
| 152 |
59 64 65 65 151
|
elo1d |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ∈ 𝑂(1) ) |
| 153 |
58 152
|
eqeltrrid |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) ∈ 𝑂(1) ) |
| 154 |
34 37 153
|
o1dif |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ∈ 𝑂(1) ) ) |
| 155 |
20 154
|
mpbird |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ) |
| 156 |
155
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) |