Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
2 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
3 |
2
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
4 |
|
mucl |
⊢ ( 𝑛 ∈ ℕ → ( μ ‘ 𝑛 ) ∈ ℤ ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℤ ) |
6 |
5
|
zred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℝ ) |
7 |
6 3
|
nndivred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
9 |
1 8
|
fsumcl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
10 |
9
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
11 |
|
emre |
⊢ γ ∈ ℝ |
12 |
11
|
recni |
⊢ γ ∈ ℂ |
13 |
12
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → γ ∈ ℂ ) |
14 |
|
mudivsum |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) |
15 |
14
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ 𝑂(1) ) |
16 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
17 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ γ ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ γ ) ∈ 𝑂(1) ) |
18 |
16 12 17
|
mp2an |
⊢ ( 𝑥 ∈ ℝ+ ↦ γ ) ∈ 𝑂(1) |
19 |
18
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ γ ) ∈ 𝑂(1) ) |
20 |
10 13 15 19
|
o1mul2 |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ∈ 𝑂(1) ) |
21 |
|
fzfid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ∈ Fin ) |
22 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
23 |
22
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → 𝑚 ∈ ℕ ) |
24 |
23
|
nnrecred |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
25 |
21 24
|
fsumrecl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
26 |
2
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
27 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
28 |
26 27
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
29 |
28
|
relogcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
30 |
25 29
|
resubcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
31 |
7 30
|
remulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
32 |
1 31
|
fsumrecl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℝ ) |
33 |
32
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
34 |
33
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
35 |
|
mulcl |
⊢ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ∧ γ ∈ ℂ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
36 |
9 12 35
|
sylancl |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
37 |
36
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
38 |
|
nnrecre |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℝ ) |
39 |
38
|
recnd |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℂ ) |
40 |
23 39
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
41 |
21 40
|
fsumcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) ∈ ℂ ) |
42 |
29
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
43 |
41 42
|
subcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℂ ) |
44 |
8 43
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ∈ ℂ ) |
45 |
|
mulcl |
⊢ ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ∧ γ ∈ ℂ ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
46 |
8 12 45
|
sylancl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ∈ ℂ ) |
47 |
1 44 46
|
fsumsub |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
48 |
12
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → γ ∈ ℂ ) |
49 |
41 42 48
|
subsub4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) − γ ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) − γ ) ) = ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) |
51 |
8 43 48
|
subdid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) − γ ) ) = ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
52 |
50 51
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) = ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
53 |
52
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
54 |
12
|
a1i |
⊢ ( 𝑥 ∈ ℝ+ → γ ∈ ℂ ) |
55 |
1 54 8
|
fsummulc1 |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) |
56 |
55
|
oveq2d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
57 |
47 53 56
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
58 |
57
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) |
59 |
16
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
60 |
42 48
|
addcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ∈ ℂ ) |
61 |
41 60
|
subcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ∈ ℂ ) |
62 |
8 61
|
mulcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ∈ ℂ ) |
63 |
1 62
|
fsumcl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ∈ ℂ ) |
64 |
63
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ∈ ℂ ) |
65 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
66 |
63
|
abscld |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ∈ ℝ ) |
67 |
62
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ∈ ℝ ) |
68 |
1 67
|
fsumrecl |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ∈ ℝ ) |
69 |
|
1red |
⊢ ( 𝑥 ∈ ℝ+ → 1 ∈ ℝ ) |
70 |
1 62
|
fsumabs |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ) |
71 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
72 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
73 |
71 72
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
74 |
73
|
nn0red |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
75 |
|
rerpdivcl |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
76 |
74 75
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
77 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
78 |
77
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
79 |
78
|
rpred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
80 |
8
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
81 |
3
|
nnrecred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
82 |
61
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ∈ ℝ ) |
83 |
|
id |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ+ ) |
84 |
|
rpdivcl |
⊢ ( ( 𝑛 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑛 / 𝑥 ) ∈ ℝ+ ) |
85 |
26 83 84
|
syl2anr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 / 𝑥 ) ∈ ℝ+ ) |
86 |
85
|
rpred |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 / 𝑥 ) ∈ ℝ ) |
87 |
8
|
absge0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ) |
88 |
61
|
absge0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) |
89 |
6
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑛 ) ∈ ℂ ) |
90 |
3
|
nncnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
91 |
3
|
nnne0d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
92 |
89 90 91
|
absdivd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) = ( ( abs ‘ ( μ ‘ 𝑛 ) ) / ( abs ‘ 𝑛 ) ) ) |
93 |
3
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
94 |
|
rprege0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ) |
95 |
93 94
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ) |
96 |
|
absid |
⊢ ( ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
97 |
95 96
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
98 |
97
|
oveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑛 ) ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ ( μ ‘ 𝑛 ) ) / 𝑛 ) ) |
99 |
92 98
|
eqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) = ( ( abs ‘ ( μ ‘ 𝑛 ) ) / 𝑛 ) ) |
100 |
89
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑛 ) ) ∈ ℝ ) |
101 |
|
1red |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
102 |
|
mule1 |
⊢ ( 𝑛 ∈ ℕ → ( abs ‘ ( μ ‘ 𝑛 ) ) ≤ 1 ) |
103 |
3 102
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑛 ) ) ≤ 1 ) |
104 |
100 101 93 103
|
lediv1dd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑛 ) ) / 𝑛 ) ≤ ( 1 / 𝑛 ) ) |
105 |
99 104
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) ≤ ( 1 / 𝑛 ) ) |
106 |
|
harmonicbnd4 |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ+ → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ≤ ( 1 / ( 𝑥 / 𝑛 ) ) ) |
107 |
28 106
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ≤ ( 1 / ( 𝑥 / 𝑛 ) ) ) |
108 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
110 |
|
rpcnne0 |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
111 |
93 110
|
syl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
112 |
|
recdiv |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( 1 / ( 𝑥 / 𝑛 ) ) = ( 𝑛 / 𝑥 ) ) |
113 |
109 111 112
|
syl2anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( 𝑥 / 𝑛 ) ) = ( 𝑛 / 𝑥 ) ) |
114 |
107 113
|
breqtrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ≤ ( 𝑛 / 𝑥 ) ) |
115 |
80 81 82 86 87 88 105 114
|
lemul12ad |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ ( ( 1 / 𝑛 ) · ( 𝑛 / 𝑥 ) ) ) |
116 |
8 61
|
absmuld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) = ( ( abs ‘ ( ( μ ‘ 𝑛 ) / 𝑛 ) ) · ( abs ‘ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ) |
117 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℂ ) |
118 |
|
dmdcan |
⊢ ( ( ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ 1 ∈ ℂ ) → ( ( 𝑛 / 𝑥 ) · ( 1 / 𝑛 ) ) = ( 1 / 𝑥 ) ) |
119 |
111 109 117 118
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 / 𝑥 ) · ( 1 / 𝑛 ) ) = ( 1 / 𝑥 ) ) |
120 |
85
|
rpcnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 / 𝑥 ) ∈ ℂ ) |
121 |
81
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
122 |
120 121
|
mulcomd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 / 𝑥 ) · ( 1 / 𝑛 ) ) = ( ( 1 / 𝑛 ) · ( 𝑛 / 𝑥 ) ) ) |
123 |
119 122
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑥 ) = ( ( 1 / 𝑛 ) · ( 𝑛 / 𝑥 ) ) ) |
124 |
115 116 123
|
3brtr4d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ ( 1 / 𝑥 ) ) |
125 |
1 67 79 124
|
fsumle |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) ) |
126 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
127 |
73 126
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) = ( ⌊ ‘ 𝑥 ) ) |
128 |
127
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) = ( ( ⌊ ‘ 𝑥 ) · ( 1 / 𝑥 ) ) ) |
129 |
77
|
rpcnd |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℂ ) |
130 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ ( 1 / 𝑥 ) ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) ) |
131 |
1 129 130
|
syl2anc |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) · ( 1 / 𝑥 ) ) ) |
132 |
73
|
nn0cnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℂ ) |
133 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
134 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
135 |
132 133 134
|
divrecd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) = ( ( ⌊ ‘ 𝑥 ) · ( 1 / 𝑥 ) ) ) |
136 |
128 131 135
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑥 ) = ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ) |
137 |
125 136
|
breqtrd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ) |
138 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
139 |
|
flle |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
140 |
138 139
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ≤ 𝑥 ) |
141 |
133
|
mulid1d |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 · 1 ) = 𝑥 ) |
142 |
140 141
|
breqtrrd |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) |
143 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
144 |
138 143
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
145 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
146 |
|
ledivmul |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ↔ ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) ) |
147 |
144 69 145 146
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ↔ ( ⌊ ‘ 𝑥 ) ≤ ( 𝑥 · 1 ) ) ) |
148 |
142 147
|
mpbird |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ⌊ ‘ 𝑥 ) / 𝑥 ) ≤ 1 ) |
149 |
68 76 69 137 148
|
letrd |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ 1 ) |
150 |
66 68 69 70 149
|
letrd |
⊢ ( 𝑥 ∈ ℝ+ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ 1 ) |
151 |
150
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ≤ 1 ) |
152 |
59 64 65 65 151
|
elo1d |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( ( log ‘ ( 𝑥 / 𝑛 ) ) + γ ) ) ) ) ∈ 𝑂(1) ) |
153 |
58 152
|
eqeltrrid |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ) ∈ 𝑂(1) ) |
154 |
34 37 153
|
o1dif |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( μ ‘ 𝑛 ) / 𝑛 ) · γ ) ) ∈ 𝑂(1) ) ) |
155 |
20 154
|
mpbird |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) ) |
156 |
155
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( μ ‘ 𝑛 ) / 𝑛 ) · ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑛 ) ) ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑥 / 𝑛 ) ) ) ) ) ∈ 𝑂(1) |