| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-mq |
⊢ ·Q = ( ( [Q] ∘ ·pQ ) ↾ ( Q × Q ) ) |
| 2 |
1
|
fveq1i |
⊢ ( ·Q ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( ( [Q] ∘ ·pQ ) ↾ ( Q × Q ) ) ‘ 〈 𝐴 , 𝐵 〉 ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( ·Q ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( ( [Q] ∘ ·pQ ) ↾ ( Q × Q ) ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 4 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → 〈 𝐴 , 𝐵 〉 ∈ ( Q × Q ) ) |
| 5 |
4
|
fvresd |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( ( ( [Q] ∘ ·pQ ) ↾ ( Q × Q ) ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( [Q] ∘ ·pQ ) ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 6 |
|
df-mpq |
⊢ ·pQ = ( 𝑥 ∈ ( N × N ) , 𝑦 ∈ ( N × N ) ↦ 〈 ( ( 1st ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) , ( ( 2nd ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) 〉 ) |
| 7 |
|
opex |
⊢ 〈 ( ( 1st ‘ 𝑥 ) ·N ( 1st ‘ 𝑦 ) ) , ( ( 2nd ‘ 𝑥 ) ·N ( 2nd ‘ 𝑦 ) ) 〉 ∈ V |
| 8 |
6 7
|
fnmpoi |
⊢ ·pQ Fn ( ( N × N ) × ( N × N ) ) |
| 9 |
|
elpqn |
⊢ ( 𝐴 ∈ Q → 𝐴 ∈ ( N × N ) ) |
| 10 |
|
elpqn |
⊢ ( 𝐵 ∈ Q → 𝐵 ∈ ( N × N ) ) |
| 11 |
|
opelxpi |
⊢ ( ( 𝐴 ∈ ( N × N ) ∧ 𝐵 ∈ ( N × N ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( ( N × N ) × ( N × N ) ) ) |
| 12 |
9 10 11
|
syl2an |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → 〈 𝐴 , 𝐵 〉 ∈ ( ( N × N ) × ( N × N ) ) ) |
| 13 |
|
fvco2 |
⊢ ( ( ·pQ Fn ( ( N × N ) × ( N × N ) ) ∧ 〈 𝐴 , 𝐵 〉 ∈ ( ( N × N ) × ( N × N ) ) ) → ( ( [Q] ∘ ·pQ ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( [Q] ‘ ( ·pQ ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 14 |
8 12 13
|
sylancr |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( ( [Q] ∘ ·pQ ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( [Q] ‘ ( ·pQ ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 15 |
3 5 14
|
3eqtrd |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( ·Q ‘ 〈 𝐴 , 𝐵 〉 ) = ( [Q] ‘ ( ·pQ ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 16 |
|
df-ov |
⊢ ( 𝐴 ·Q 𝐵 ) = ( ·Q ‘ 〈 𝐴 , 𝐵 〉 ) |
| 17 |
|
df-ov |
⊢ ( 𝐴 ·pQ 𝐵 ) = ( ·pQ ‘ 〈 𝐴 , 𝐵 〉 ) |
| 18 |
17
|
fveq2i |
⊢ ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) = ( [Q] ‘ ( ·pQ ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 19 |
15 16 18
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ Q ∧ 𝐵 ∈ Q ) → ( 𝐴 ·Q 𝐵 ) = ( [Q] ‘ ( 𝐴 ·pQ 𝐵 ) ) ) |