Step |
Hyp |
Ref |
Expression |
1 |
|
0r |
⊢ 0R ∈ R |
2 |
|
mulcnsr |
⊢ ( ( ( 𝐴 ∈ R ∧ 0R ∈ R ) ∧ ( 𝐵 ∈ R ∧ 0R ∈ R ) ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) , ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) 〉 ) |
3 |
2
|
an4s |
⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 0R ∈ R ∧ 0R ∈ R ) ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) , ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) 〉 ) |
4 |
1 1 3
|
mpanr12 |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) , ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) 〉 ) |
5 |
|
00sr |
⊢ ( 0R ∈ R → ( 0R ·R 0R ) = 0R ) |
6 |
1 5
|
ax-mp |
⊢ ( 0R ·R 0R ) = 0R |
7 |
6
|
oveq2i |
⊢ ( -1R ·R ( 0R ·R 0R ) ) = ( -1R ·R 0R ) |
8 |
|
m1r |
⊢ -1R ∈ R |
9 |
|
00sr |
⊢ ( -1R ∈ R → ( -1R ·R 0R ) = 0R ) |
10 |
8 9
|
ax-mp |
⊢ ( -1R ·R 0R ) = 0R |
11 |
7 10
|
eqtri |
⊢ ( -1R ·R ( 0R ·R 0R ) ) = 0R |
12 |
11
|
oveq2i |
⊢ ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) = ( ( 𝐴 ·R 𝐵 ) +R 0R ) |
13 |
|
mulclsr |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 𝐴 ·R 𝐵 ) ∈ R ) |
14 |
|
0idsr |
⊢ ( ( 𝐴 ·R 𝐵 ) ∈ R → ( ( 𝐴 ·R 𝐵 ) +R 0R ) = ( 𝐴 ·R 𝐵 ) ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 𝐴 ·R 𝐵 ) +R 0R ) = ( 𝐴 ·R 𝐵 ) ) |
16 |
12 15
|
eqtrid |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) = ( 𝐴 ·R 𝐵 ) ) |
17 |
|
mulcomsr |
⊢ ( 0R ·R 𝐵 ) = ( 𝐵 ·R 0R ) |
18 |
|
00sr |
⊢ ( 𝐵 ∈ R → ( 𝐵 ·R 0R ) = 0R ) |
19 |
17 18
|
eqtrid |
⊢ ( 𝐵 ∈ R → ( 0R ·R 𝐵 ) = 0R ) |
20 |
|
00sr |
⊢ ( 𝐴 ∈ R → ( 𝐴 ·R 0R ) = 0R ) |
21 |
19 20
|
oveqan12rd |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) = ( 0R +R 0R ) ) |
22 |
|
0idsr |
⊢ ( 0R ∈ R → ( 0R +R 0R ) = 0R ) |
23 |
1 22
|
ax-mp |
⊢ ( 0R +R 0R ) = 0R |
24 |
21 23
|
eqtrdi |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) = 0R ) |
25 |
16 24
|
opeq12d |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → 〈 ( ( 𝐴 ·R 𝐵 ) +R ( -1R ·R ( 0R ·R 0R ) ) ) , ( ( 0R ·R 𝐵 ) +R ( 𝐴 ·R 0R ) ) 〉 = 〈 ( 𝐴 ·R 𝐵 ) , 0R 〉 ) |
26 |
4 25
|
eqtrd |
⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 〈 𝐴 , 0R 〉 · 〈 𝐵 , 0R 〉 ) = 〈 ( 𝐴 ·R 𝐵 ) , 0R 〉 ) |