Metamath Proof Explorer


Theorem muls12d

Description: Commutative/associative law for surreal multiplication. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses muls12d.1 ( 𝜑𝐴 No )
muls12d.2 ( 𝜑𝐵 No )
muls12d.3 ( 𝜑𝐶 No )
Assertion muls12d ( 𝜑 → ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) = ( 𝐵 ·s ( 𝐴 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 muls12d.1 ( 𝜑𝐴 No )
2 muls12d.2 ( 𝜑𝐵 No )
3 muls12d.3 ( 𝜑𝐶 No )
4 1 2 mulscomd ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( 𝐵 ·s 𝐴 ) )
5 4 oveq1d ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( ( 𝐵 ·s 𝐴 ) ·s 𝐶 ) )
6 1 2 3 mulsassd ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) )
7 2 1 3 mulsassd ( 𝜑 → ( ( 𝐵 ·s 𝐴 ) ·s 𝐶 ) = ( 𝐵 ·s ( 𝐴 ·s 𝐶 ) ) )
8 5 6 7 3eqtr3d ( 𝜑 → ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) = ( 𝐵 ·s ( 𝐴 ·s 𝐶 ) ) )