Metamath Proof Explorer


Theorem muls1d

Description: Multiplication by one minus a number. (Contributed by Scott Fenton, 23-Dec-2017)

Ref Expression
Hypotheses muls1d.1 ( 𝜑𝐴 ∈ ℂ )
muls1d.2 ( 𝜑𝐵 ∈ ℂ )
Assertion muls1d ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) )

Proof

Step Hyp Ref Expression
1 muls1d.1 ( 𝜑𝐴 ∈ ℂ )
2 muls1d.2 ( 𝜑𝐵 ∈ ℂ )
3 1cnd ( 𝜑 → 1 ∈ ℂ )
4 1 2 3 subdid ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 1 ) ) )
5 1 mulid1d ( 𝜑 → ( 𝐴 · 1 ) = 𝐴 )
6 5 oveq2d ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) )
7 4 6 eqtrd ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) )