Description: Multiplication by one minus a number. (Contributed by Scott Fenton, 23-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | muls1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
muls1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
Assertion | muls1d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muls1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | muls1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
4 | 1 2 3 | subdid | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 1 ) ) ) |
5 | 1 | mulid1d | ⊢ ( 𝜑 → ( 𝐴 · 1 ) = 𝐴 ) |
6 | 5 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) ) |
7 | 4 6 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) ) |