Description: Multiplication by one minus a number. (Contributed by Scott Fenton, 23-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muls1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| muls1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | muls1d | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | muls1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | muls1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 4 | 1 2 3 | subdid | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 1 ) ) ) | 
| 5 | 1 | mulridd | ⊢ ( 𝜑 → ( 𝐴 · 1 ) = 𝐴 ) | 
| 6 | 5 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) ) | 
| 7 | 4 6 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 · ( 𝐵 − 1 ) ) = ( ( 𝐴 · 𝐵 ) − 𝐴 ) ) |