Metamath Proof Explorer


Theorem muls4d

Description: Rearrangement of four surreal factors. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses muls4d.1 ( 𝜑𝐴 No )
muls4d.2 ( 𝜑𝐵 No )
muls4d.3 ( 𝜑𝐶 No )
muls4d.4 ( 𝜑𝐷 No )
Assertion muls4d ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s ( 𝐶 ·s 𝐷 ) ) = ( ( 𝐴 ·s 𝐶 ) ·s ( 𝐵 ·s 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 muls4d.1 ( 𝜑𝐴 No )
2 muls4d.2 ( 𝜑𝐵 No )
3 muls4d.3 ( 𝜑𝐶 No )
4 muls4d.4 ( 𝜑𝐷 No )
5 2 3 mulscomd ( 𝜑 → ( 𝐵 ·s 𝐶 ) = ( 𝐶 ·s 𝐵 ) )
6 5 oveq1d ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) ·s 𝐷 ) = ( ( 𝐶 ·s 𝐵 ) ·s 𝐷 ) )
7 2 3 4 mulsassd ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) ·s 𝐷 ) = ( 𝐵 ·s ( 𝐶 ·s 𝐷 ) ) )
8 3 2 4 mulsassd ( 𝜑 → ( ( 𝐶 ·s 𝐵 ) ·s 𝐷 ) = ( 𝐶 ·s ( 𝐵 ·s 𝐷 ) ) )
9 6 7 8 3eqtr3d ( 𝜑 → ( 𝐵 ·s ( 𝐶 ·s 𝐷 ) ) = ( 𝐶 ·s ( 𝐵 ·s 𝐷 ) ) )
10 9 oveq2d ( 𝜑 → ( 𝐴 ·s ( 𝐵 ·s ( 𝐶 ·s 𝐷 ) ) ) = ( 𝐴 ·s ( 𝐶 ·s ( 𝐵 ·s 𝐷 ) ) ) )
11 3 4 mulscld ( 𝜑 → ( 𝐶 ·s 𝐷 ) ∈ No )
12 1 2 11 mulsassd ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s ( 𝐶 ·s 𝐷 ) ) = ( 𝐴 ·s ( 𝐵 ·s ( 𝐶 ·s 𝐷 ) ) ) )
13 2 4 mulscld ( 𝜑 → ( 𝐵 ·s 𝐷 ) ∈ No )
14 1 3 13 mulsassd ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) ·s ( 𝐵 ·s 𝐷 ) ) = ( 𝐴 ·s ( 𝐶 ·s ( 𝐵 ·s 𝐷 ) ) ) )
15 10 12 14 3eqtr4d ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s ( 𝐶 ·s 𝐷 ) ) = ( ( 𝐴 ·s 𝐶 ) ·s ( 𝐵 ·s 𝐷 ) ) )