Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 𝑦 ) = ( 𝑥𝑂 ·s 𝑦 ) ) |
2 |
1
|
oveq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) ) |
3 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑂 ·s 𝑦𝑂 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 ·s 𝑧 ) = ( 𝑦𝑂 ·s 𝑧 ) ) |
8 |
7
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑦𝑂 ·s 𝑧 ) = ( 𝑦𝑂 ·s 𝑧𝑂 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 𝑦𝑂 ) = ( 𝑥𝑂 ·s 𝑦𝑂 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥 ·s 𝑦 ) = ( 𝑥 ·s 𝑦𝑂 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑦 ·s 𝑧𝑂 ) = ( 𝑦𝑂 ·s 𝑧𝑂 ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
22 |
19 21
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) ) |
23 |
5
|
oveq1d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) ) |
24 |
20
|
oveq2d |
⊢ ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) ) |
27 |
11
|
oveq2d |
⊢ ( 𝑧 = 𝑧𝑂 → ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
28 |
26 27
|
eqeq12d |
⊢ ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ↔ ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·s 𝑦 ) = ( 𝐴 ·s 𝑦 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) |
31 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) |
32 |
30 31
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ↔ ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
33 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·s 𝑦 ) = ( 𝐴 ·s 𝐵 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) = ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) |
35 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ·s 𝑧 ) = ( 𝐵 ·s 𝑧 ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) |
37 |
34 36
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) ) |
38 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) = ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝐵 ·s 𝑧 ) = ( 𝐵 ·s 𝐶 ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) ) |
41 |
38 40
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) ) ) |
42 |
|
simpl1 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → 𝑥 ∈ No ) |
43 |
|
simpl2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → 𝑦 ∈ No ) |
44 |
|
simpl3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → 𝑧 ∈ No ) |
45 |
|
ssun1 |
⊢ ( L ‘ 𝑥 ) ⊆ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) |
46 |
|
ssun1 |
⊢ ( L ‘ 𝑦 ) ⊆ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |
47 |
|
ssun1 |
⊢ ( L ‘ 𝑧 ) ⊆ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) |
48 |
|
simpr11 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
49 |
|
simpr12 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) |
50 |
|
simpr13 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) |
51 |
|
simpr22 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
52 |
|
simpr21 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ) |
53 |
|
simpr23 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) |
54 |
|
simpr3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) |
55 |
42 43 44 45 46 47 48 49 50 51 52 53 54
|
mulsasslem3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) ) ) |
56 |
55
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) |
57 |
|
ssun2 |
⊢ ( R ‘ 𝑥 ) ⊆ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) |
58 |
|
ssun2 |
⊢ ( R ‘ 𝑦 ) ⊆ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) |
59 |
42 43 44 57 58 47 48 49 50 51 52 53 54
|
mulsasslem3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) ) ) |
60 |
59
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) |
61 |
56 60
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) |
62 |
|
ssun2 |
⊢ ( R ‘ 𝑧 ) ⊆ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) |
63 |
42 43 44 45 58 62 48 49 50 51 52 53 54
|
mulsasslem3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) ) ) |
64 |
63
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) |
65 |
42 43 44 57 46 62 48 49 50 51 52 53 54
|
mulsasslem3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) ) ) |
66 |
65
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) |
67 |
64 66
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) |
68 |
61 67
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) ) |
69 |
|
un4 |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) |
70 |
|
uncom |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) |
71 |
70
|
uneq2i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) |
72 |
69 71
|
eqtri |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) |
73 |
68 72
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) ) |
74 |
42 43 44 45 46 62 48 49 50 51 52 53 54
|
mulsasslem3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) ) ) |
75 |
74
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) |
76 |
42 43 44 57 58 62 48 49 50 51 52 53 54
|
mulsasslem3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) ) ) |
77 |
76
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) |
78 |
75 77
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) |
79 |
42 43 44 45 58 47 48 49 50 51 52 53 54
|
mulsasslem3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) ) ) |
80 |
79
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) |
81 |
42 43 44 57 46 47 48 49 50 51 52 53 54
|
mulsasslem3 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) ) ) |
82 |
81
|
abbidv |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) |
83 |
80 82
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) |
84 |
78 83
|
uneq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) ) |
85 |
|
un4 |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) |
86 |
|
uncom |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) |
87 |
86
|
uneq2i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) |
88 |
85 87
|
eqtri |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) |
89 |
84 88
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) ) |
90 |
73 89
|
oveq12d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) ) ) |
91 |
42 43 44
|
mulsasslem1 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) ) ) ) |
92 |
42 43 44
|
mulsasslem2 |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) ) ) |
93 |
90 91 92
|
3eqtr4d |
⊢ ( ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) |
94 |
93
|
ex |
⊢ ( ( 𝑥 ∈ No ∧ 𝑦 ∈ No ∧ 𝑧 ∈ No ) → ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
95 |
4 9 13 17 22 25 28 32 37 41 94
|
no3inds |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) ) |