Metamath Proof Explorer


Theorem mulsass

Description: Associative law for surreal multiplication. Part of theorem 7 of Conway p. 19. Much like the case for additive groups, this theorem together with mulscom , addsdi , mulsgt0 , and the addition theorems would make the surreals into an ordered ring except that they are a proper class. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Assertion mulsass ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 𝑦 ) = ( 𝑥𝑂 ·s 𝑦 ) )
2 1 oveq1d ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) )
3 oveq1 ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) )
4 2 3 eqeq12d ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ) )
5 oveq2 ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s 𝑦 ) = ( 𝑥𝑂 ·s 𝑦𝑂 ) )
6 5 oveq1d ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) )
7 oveq1 ( 𝑦 = 𝑦𝑂 → ( 𝑦 ·s 𝑧 ) = ( 𝑦𝑂 ·s 𝑧 ) )
8 7 oveq2d ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) )
9 6 8 eqeq12d ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) )
10 oveq2 ( 𝑧 = 𝑧𝑂 → ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) )
11 oveq2 ( 𝑧 = 𝑧𝑂 → ( 𝑦𝑂 ·s 𝑧 ) = ( 𝑦𝑂 ·s 𝑧𝑂 ) )
12 11 oveq2d ( 𝑧 = 𝑧𝑂 → ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) )
13 10 12 eqeq12d ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) )
14 oveq1 ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s 𝑦𝑂 ) = ( 𝑥𝑂 ·s 𝑦𝑂 ) )
15 14 oveq1d ( 𝑥 = 𝑥𝑂 → ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) )
16 oveq1 ( 𝑥 = 𝑥𝑂 → ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) )
17 15 16 eqeq12d ( 𝑥 = 𝑥𝑂 → ( ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) )
18 oveq2 ( 𝑦 = 𝑦𝑂 → ( 𝑥 ·s 𝑦 ) = ( 𝑥 ·s 𝑦𝑂 ) )
19 18 oveq1d ( 𝑦 = 𝑦𝑂 → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) )
20 oveq1 ( 𝑦 = 𝑦𝑂 → ( 𝑦 ·s 𝑧𝑂 ) = ( 𝑦𝑂 ·s 𝑧𝑂 ) )
21 20 oveq2d ( 𝑦 = 𝑦𝑂 → ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) )
22 19 21 eqeq12d ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) )
23 5 oveq1d ( 𝑦 = 𝑦𝑂 → ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) )
24 20 oveq2d ( 𝑦 = 𝑦𝑂 → ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) )
25 23 24 eqeq12d ( 𝑦 = 𝑦𝑂 → ( ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) )
26 oveq2 ( 𝑧 = 𝑧𝑂 → ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) )
27 11 oveq2d ( 𝑧 = 𝑧𝑂 → ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) )
28 26 27 eqeq12d ( 𝑧 = 𝑧𝑂 → ( ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ↔ ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) )
29 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ·s 𝑦 ) = ( 𝐴 ·s 𝑦 ) )
30 29 oveq1d ( 𝑥 = 𝐴 → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) )
31 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) )
32 30 31 eqeq12d ( 𝑥 = 𝐴 → ( ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ↔ ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) )
33 oveq2 ( 𝑦 = 𝐵 → ( 𝐴 ·s 𝑦 ) = ( 𝐴 ·s 𝐵 ) )
34 33 oveq1d ( 𝑦 = 𝐵 → ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) = ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) )
35 oveq1 ( 𝑦 = 𝐵 → ( 𝑦 ·s 𝑧 ) = ( 𝐵 ·s 𝑧 ) )
36 35 oveq2d ( 𝑦 = 𝐵 → ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) )
37 34 36 eqeq12d ( 𝑦 = 𝐵 → ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) )
38 oveq2 ( 𝑧 = 𝐶 → ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) = ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) )
39 oveq2 ( 𝑧 = 𝐶 → ( 𝐵 ·s 𝑧 ) = ( 𝐵 ·s 𝐶 ) )
40 39 oveq2d ( 𝑧 = 𝐶 → ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) )
41 38 40 eqeq12d ( 𝑧 = 𝐶 → ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) ) )
42 simpl1 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → 𝑥 No )
43 simpl2 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → 𝑦 No )
44 simpl3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → 𝑧 No )
45 ssun1 ( L ‘ 𝑥 ) ⊆ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) )
46 ssun1 ( L ‘ 𝑦 ) ⊆ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) )
47 ssun1 ( L ‘ 𝑧 ) ⊆ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) )
48 simpr11 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) )
49 simpr12 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) )
50 simpr13 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) )
51 simpr22 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) )
52 simpr21 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) )
53 simpr23 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) )
54 simpr3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) )
55 42 43 44 45 46 47 48 49 50 51 52 53 54 mulsasslem3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) ) )
56 55 abbidv ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } )
57 ssun2 ( R ‘ 𝑥 ) ⊆ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) )
58 ssun2 ( R ‘ 𝑦 ) ⊆ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) )
59 42 43 44 57 58 47 48 49 50 51 52 53 54 mulsasslem3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) ) )
60 59 abbidv ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } )
61 56 60 uneq12d ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) )
62 ssun2 ( R ‘ 𝑧 ) ⊆ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) )
63 42 43 44 45 58 62 48 49 50 51 52 53 54 mulsasslem3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) ) )
64 63 abbidv ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } )
65 42 43 44 57 46 62 48 49 50 51 52 53 54 mulsasslem3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) ) )
66 65 abbidv ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } )
67 64 66 uneq12d ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) )
68 61 67 uneq12d ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) )
69 un4 ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) )
70 uncom ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } )
71 70 uneq2i ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) )
72 69 71 eqtri ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) )
73 68 72 eqtrdi ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) )
74 42 43 44 45 46 62 48 49 50 51 52 53 54 mulsasslem3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) ) )
75 74 abbidv ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } )
76 42 43 44 57 58 62 48 49 50 51 52 53 54 mulsasslem3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) ) )
77 76 abbidv ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } )
78 75 77 uneq12d ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) )
79 42 43 44 45 58 47 48 49 50 51 52 53 54 mulsasslem3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) ) )
80 79 abbidv ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } )
81 42 43 44 57 46 47 48 49 50 51 52 53 54 mulsasslem3 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) ) )
82 81 abbidv ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } )
83 80 82 uneq12d ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) )
84 78 83 uneq12d ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) )
85 un4 ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) )
86 uncom ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) = ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } )
87 86 uneq2i ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) )
88 85 87 eqtri ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) )
89 84 88 eqtrdi ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) )
90 73 89 oveq12d ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) ) )
91 42 43 44 mulsasslem1 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝐿 ·s 𝑦𝐿 ) ) ·s 𝑧𝑅 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑅 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝑅 ·s 𝑦𝑅 ) ) ·s 𝑧𝑅 ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝐿 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝑅 ) ) -s ( 𝑥𝐿 ·s 𝑦𝑅 ) ) ·s 𝑧𝐿 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝐿 ) ) -s ( ( ( ( 𝑥𝑅 ·s 𝑦 ) +s ( 𝑥 ·s 𝑦𝐿 ) ) -s ( 𝑥𝑅 ·s 𝑦𝐿 ) ) ·s 𝑧𝐿 ) ) } ) ) ) )
92 42 43 44 mulsasslem2 ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝐿 ·s 𝑧𝑅 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝐿 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝑅 ·s 𝑧𝐿 ) ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝑦 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝐿 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝐿 ) ) -s ( 𝑦𝐿 ·s 𝑧𝐿 ) ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝑥 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝑦 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝑧 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝑦 ·s 𝑧 ) ) +s ( 𝑥 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) -s ( 𝑥𝑅 ·s ( ( ( 𝑦𝑅 ·s 𝑧 ) +s ( 𝑦 ·s 𝑧𝑅 ) ) -s ( 𝑦𝑅 ·s 𝑧𝑅 ) ) ) ) } ) ) ) )
93 90 91 92 3eqtr4d ( ( ( 𝑥 No 𝑦 No 𝑧 No ) ∧ ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) )
94 93 ex ( ( 𝑥 No 𝑦 No 𝑧 No ) → ( ( ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ∧ ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ∧ ( ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝑥 ) ∪ ( R ‘ 𝑥 ) ) ( ( 𝑥𝑂 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥𝑂 ·s ( 𝑦 ·s 𝑧 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ∧ ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝑦 ) ∪ ( R ‘ 𝑦 ) ) ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧 ) ) ) ∧ ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝑧 ) ∪ ( R ‘ 𝑧 ) ) ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) )
95 4 9 13 17 22 25 28 32 37 41 94 no3inds ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) )