Metamath Proof Explorer


Theorem mulsassd

Description: Associative law for surreal multiplication. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulsassd.1 ( 𝜑𝐴 No )
mulsassd.2 ( 𝜑𝐵 No )
mulsassd.3 ( 𝜑𝐶 No )
Assertion mulsassd ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 mulsassd.1 ( 𝜑𝐴 No )
2 mulsassd.2 ( 𝜑𝐵 No )
3 mulsassd.3 ( 𝜑𝐶 No )
4 mulsass ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) )