Metamath Proof Explorer
Description: Associative law for surreal multiplication. Part of theorem 7 of
Conway p. 19. (Contributed by Scott Fenton, 10-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
mulsassd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
mulsassd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
mulsassd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
Assertion |
mulsassd |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mulsassd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
mulsassd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
mulsassd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
mulsass |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝐵 ·s 𝐶 ) ) ) |