Step |
Hyp |
Ref |
Expression |
1 |
|
mulsasslem3.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
mulsasslem3.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
mulsasslem3.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
mulsasslem3.4 |
⊢ 𝑃 ⊆ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) |
5 |
|
mulsasslem3.5 |
⊢ 𝑄 ⊆ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) |
6 |
|
mulsasslem3.6 |
⊢ 𝑅 ⊆ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) |
7 |
|
mulsasslem3.7 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
8 |
|
mulsasslem3.8 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ) |
9 |
|
mulsasslem3.9 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( ( 𝑥𝑂 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ) |
10 |
|
mulsasslem3.10 |
⊢ ( 𝜑 → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( ( 𝐴 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝐴 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
11 |
|
mulsasslem3.11 |
⊢ ( 𝜑 → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( ( 𝑥𝑂 ·s 𝐵 ) ·s 𝐶 ) = ( 𝑥𝑂 ·s ( 𝐵 ·s 𝐶 ) ) ) |
12 |
|
mulsasslem3.12 |
⊢ ( 𝜑 → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( ( 𝐴 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ) |
13 |
|
mulsasslem3.13 |
⊢ ( 𝜑 → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( ( 𝐴 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥 → ( 𝑥𝑂 ·s 𝐵 ) = ( 𝑥 ·s 𝐵 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑥𝑂 = 𝑥 → ( ( 𝑥𝑂 ·s 𝐵 ) ·s 𝐶 ) = ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥 → ( 𝑥𝑂 ·s ( 𝐵 ·s 𝐶 ) ) = ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑥 → ( ( ( 𝑥𝑂 ·s 𝐵 ) ·s 𝐶 ) = ( 𝑥𝑂 ·s ( 𝐵 ·s 𝐶 ) ) ↔ ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) = ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) ) ) |
18 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ( ( 𝑥𝑂 ·s 𝐵 ) ·s 𝐶 ) = ( 𝑥𝑂 ·s ( 𝐵 ·s 𝐶 ) ) ) |
19 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑃 ) |
20 |
4 19
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
21 |
17 18 20
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) = ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑦 → ( 𝐴 ·s 𝑦𝑂 ) = ( 𝐴 ·s 𝑦 ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑦 → ( ( 𝐴 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) |
24 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑦 → ( 𝑦𝑂 ·s 𝐶 ) = ( 𝑦 ·s 𝐶 ) ) |
25 |
24
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦 → ( 𝐴 ·s ( 𝑦𝑂 ·s 𝐶 ) ) = ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) ) |
26 |
23 25
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑦 → ( ( ( 𝐴 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ↔ ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) ) ) |
27 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( ( 𝐴 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ) |
28 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑄 ) |
29 |
5 28
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
30 |
26 27 29
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) = ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) ) |
31 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧 → ( ( 𝐴 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) |
32 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧 → ( 𝐵 ·s 𝑧𝑂 ) = ( 𝐵 ·s 𝑧 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑧 → ( 𝐴 ·s ( 𝐵 ·s 𝑧𝑂 ) ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) |
34 |
31 33
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑧 → ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) ) |
35 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( ( 𝐴 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ) |
36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ 𝑅 ) |
37 |
6 36
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ) |
38 |
34 35 37
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) |
39 |
|
leftssno |
⊢ ( L ‘ 𝐴 ) ⊆ No |
40 |
|
rightssno |
⊢ ( R ‘ 𝐴 ) ⊆ No |
41 |
39 40
|
unssi |
⊢ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ⊆ No |
42 |
4 41
|
sstri |
⊢ 𝑃 ⊆ No |
43 |
42 19
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ No ) |
44 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝐵 ∈ No ) |
45 |
43 44
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s 𝐵 ) ∈ No ) |
46 |
|
leftssno |
⊢ ( L ‘ 𝐶 ) ⊆ No |
47 |
|
rightssno |
⊢ ( R ‘ 𝐶 ) ⊆ No |
48 |
46 47
|
unssi |
⊢ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ⊆ No |
49 |
6 48
|
sstri |
⊢ 𝑅 ⊆ No |
50 |
49 36
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ No ) |
51 |
45 50
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) ∈ No ) |
52 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝐴 ∈ No ) |
53 |
|
leftssno |
⊢ ( L ‘ 𝐵 ) ⊆ No |
54 |
|
rightssno |
⊢ ( R ‘ 𝐵 ) ⊆ No |
55 |
53 54
|
unssi |
⊢ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ⊆ No |
56 |
5 55
|
sstri |
⊢ 𝑄 ⊆ No |
57 |
56 28
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ No ) |
58 |
52 57
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐴 ·s 𝑦 ) ∈ No ) |
59 |
58 50
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ∈ No ) |
60 |
51 59
|
addscomd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) = ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) ) ) |
61 |
60
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) = ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) |
62 |
43 57
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s 𝑦 ) ∈ No ) |
63 |
62 50
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ∈ No ) |
64 |
59 51 63
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) = ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) |
65 |
61 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) = ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) |
66 |
65
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) |
67 |
51 63
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ∈ No ) |
68 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → 𝐶 ∈ No ) |
69 |
62 68
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ∈ No ) |
70 |
59 67 69
|
addsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) ) |
71 |
22
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑦 → ( ( 𝐴 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( ( 𝐴 ·s 𝑦 ) ·s 𝑧𝑂 ) ) |
72 |
|
oveq1 |
⊢ ( 𝑦𝑂 = 𝑦 → ( 𝑦𝑂 ·s 𝑧𝑂 ) = ( 𝑦 ·s 𝑧𝑂 ) ) |
73 |
72
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦 → ( 𝐴 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) |
74 |
71 73
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑦 → ( ( ( 𝐴 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝐴 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ↔ ( ( 𝐴 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) |
75 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧 → ( ( 𝐴 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) |
76 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧 → ( 𝑦 ·s 𝑧𝑂 ) = ( 𝑦 ·s 𝑧 ) ) |
77 |
76
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑧 → ( 𝐴 ·s ( 𝑦 ·s 𝑧𝑂 ) ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) |
78 |
75 77
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑧 → ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ↔ ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
79 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( ( 𝐴 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝐴 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
80 |
74 78 79 29 37
|
rspc2dv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) = ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) |
81 |
51 69 63
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) = ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) |
82 |
14
|
oveq1d |
⊢ ( 𝑥𝑂 = 𝑥 → ( ( 𝑥𝑂 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( ( 𝑥 ·s 𝐵 ) ·s 𝑧𝑂 ) ) |
83 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥 → ( 𝑥𝑂 ·s ( 𝐵 ·s 𝑧𝑂 ) ) = ( 𝑥 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ) |
84 |
82 83
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑥 → ( ( ( 𝑥𝑂 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ) ) |
85 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧 → ( ( 𝑥 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) ) |
86 |
32
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑧 → ( 𝑥 ·s ( 𝐵 ·s 𝑧𝑂 ) ) = ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) |
87 |
85 86
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑧 → ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) ) |
88 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( ( 𝑥𝑂 ·s 𝐵 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝐵 ·s 𝑧𝑂 ) ) ) |
89 |
84 87 88 20 37
|
rspc2dv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) |
90 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥 → ( 𝑥𝑂 ·s 𝑦𝑂 ) = ( 𝑥 ·s 𝑦𝑂 ) ) |
91 |
90
|
oveq1d |
⊢ ( 𝑥𝑂 = 𝑥 → ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝐶 ) ) |
92 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥 → ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝐶 ) ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ) |
93 |
91 92
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑥 → ( ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ↔ ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ) ) |
94 |
|
oveq2 |
⊢ ( 𝑦𝑂 = 𝑦 → ( 𝑥 ·s 𝑦𝑂 ) = ( 𝑥 ·s 𝑦 ) ) |
95 |
94
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑦 → ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) |
96 |
24
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦 → ( 𝑥 ·s ( 𝑦𝑂 ·s 𝐶 ) ) = ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) ) |
97 |
95 96
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑦 → ( ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ↔ ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) = ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) ) ) |
98 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝐶 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝐶 ) ) ) |
99 |
93 97 98 20 29
|
rspc2dv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) = ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) ) |
100 |
89 99
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) ) ) |
101 |
44 50
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐵 ·s 𝑧 ) ∈ No ) |
102 |
43 101
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ∈ No ) |
103 |
57 68
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 ·s 𝐶 ) ∈ No ) |
104 |
43 103
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) ∈ No ) |
105 |
102 104
|
addscomd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) +s ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) ) = ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) ) |
106 |
100 105
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) ) |
107 |
90
|
oveq1d |
⊢ ( 𝑥𝑂 = 𝑥 → ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) ) |
108 |
|
oveq1 |
⊢ ( 𝑥𝑂 = 𝑥 → ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
109 |
107 108
|
eqeq12d |
⊢ ( 𝑥𝑂 = 𝑥 → ( ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) ) |
110 |
94
|
oveq1d |
⊢ ( 𝑦𝑂 = 𝑦 → ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) ) |
111 |
72
|
oveq2d |
⊢ ( 𝑦𝑂 = 𝑦 → ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) |
112 |
110 111
|
eqeq12d |
⊢ ( 𝑦𝑂 = 𝑦 → ( ( ( 𝑥 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ) ) |
113 |
|
oveq2 |
⊢ ( 𝑧𝑂 = 𝑧 → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) |
114 |
76
|
oveq2d |
⊢ ( 𝑧𝑂 = 𝑧 → ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) |
115 |
113 114
|
eqeq12d |
⊢ ( 𝑧𝑂 = 𝑧 → ( ( ( 𝑥 ·s 𝑦 ) ·s 𝑧𝑂 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧𝑂 ) ) ↔ ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
116 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ∀ 𝑥𝑂 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∀ 𝑦𝑂 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∀ 𝑧𝑂 ∈ ( ( L ‘ 𝐶 ) ∪ ( R ‘ 𝐶 ) ) ( ( 𝑥𝑂 ·s 𝑦𝑂 ) ·s 𝑧𝑂 ) = ( 𝑥𝑂 ·s ( 𝑦𝑂 ·s 𝑧𝑂 ) ) ) |
117 |
109 112 115 116 20 29 37
|
rspc3dv |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) = ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) |
118 |
106 117
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) = ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
119 |
81 118
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
120 |
80 119
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) +s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) = ( ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) +s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
121 |
66 70 120
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) +s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
122 |
38 121
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) = ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) +s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
123 |
52 44
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐴 ·s 𝐵 ) ∈ No ) |
124 |
123 50
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ∈ No ) |
125 |
51 59
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) ∈ No ) |
126 |
125 63
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ∈ No ) |
127 |
124 126 69
|
subsubs4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) +s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) ) |
128 |
52 101
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ∈ No ) |
129 |
57 50
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 ·s 𝑧 ) ∈ No ) |
130 |
52 129
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ∈ No ) |
131 |
104 102
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) ∈ No ) |
132 |
43 129
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ∈ No ) |
133 |
131 132
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ∈ No ) |
134 |
128 130 133
|
subsubs4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) = ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) +s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
135 |
122 127 134
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
136 |
30 135
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) +s ( ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) = ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
137 |
58 68
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ∈ No ) |
138 |
124 126
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ∈ No ) |
139 |
137 138 69
|
addsubsd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) ) |
140 |
137 138 69
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) +s ( ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) ) |
141 |
139 140
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) = ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) +s ( ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) ) |
142 |
52 103
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) ∈ No ) |
143 |
142 128 130
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) = ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
144 |
143
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) = ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
145 |
128 130
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ∈ No ) |
146 |
142 145 133
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) = ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
147 |
144 146
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) = ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
148 |
136 141 147
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) = ( ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
149 |
21 148
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) ) = ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
150 |
45 68
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) ∈ No ) |
151 |
150 137
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) ∈ No ) |
152 |
151 69
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ∈ No ) |
153 |
152 124 126
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) = ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) ) |
154 |
150 137 69
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) ) |
155 |
154
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) = ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) ) |
156 |
137 69
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ∈ No ) |
157 |
150 156 138
|
addsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) = ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) ) ) |
158 |
153 155 157
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) = ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) ) ) |
159 |
44 68
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐵 ·s 𝐶 ) ∈ No ) |
160 |
43 159
|
mulscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) ∈ No ) |
161 |
142 128
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) ∈ No ) |
162 |
161 130
|
subscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ∈ No ) |
163 |
160 162 133
|
addsubsassd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) = ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
164 |
149 158 163
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) = ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
165 |
45 58
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ∈ No ) |
166 |
165 62 68
|
subsdird |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) = ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) |
167 |
45 58 68
|
addsdird |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ·s 𝐶 ) = ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) ) |
168 |
167
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ·s 𝐶 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) = ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) |
169 |
166 168
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) = ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) ) |
170 |
169
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) = ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) ) |
171 |
165 62 50
|
subsdird |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝑧 ) = ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) |
172 |
45 58 50
|
addsdird |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ·s 𝑧 ) = ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) ) |
173 |
172
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) ·s 𝑧 ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) = ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) |
174 |
171 173
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝑧 ) = ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) |
175 |
170 174
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝑧 ) ) = ( ( ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝐶 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝐶 ) ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) ·s 𝑧 ) +s ( ( 𝐴 ·s 𝑦 ) ·s 𝑧 ) ) -s ( ( 𝑥 ·s 𝑦 ) ·s 𝑧 ) ) ) ) |
176 |
103 101
|
addscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) ∈ No ) |
177 |
52 176 129
|
subsdid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) = ( ( 𝐴 ·s ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
178 |
52 103 101
|
addsdid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐴 ·s ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) ) = ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) ) |
179 |
178
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝐴 ·s ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) = ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
180 |
177 179
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) = ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
181 |
180
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) = ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
182 |
43 176 129
|
subsdid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) = ( ( 𝑥 ·s ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
183 |
43 103 101
|
addsdid |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) ) = ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) ) |
184 |
183
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑥 ·s ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) = ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
185 |
182 184
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) = ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) |
186 |
181 185
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( 𝑥 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) = ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( ( ( 𝐴 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝐴 ·s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( ( ( 𝑥 ·s ( 𝑦 ·s 𝐶 ) ) +s ( 𝑥 ·s ( 𝐵 ·s 𝑧 ) ) ) -s ( 𝑥 ·s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
187 |
164 175 186
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( ( ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝑧 ) ) = ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( 𝑥 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) ) |
188 |
187
|
eqeq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑎 = ( ( ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝑧 ) ) ↔ 𝑎 = ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( 𝑥 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
189 |
188
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ) ∧ 𝑧 ∈ 𝑅 ) → ( 𝑎 = ( ( ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝑧 ) ) ↔ 𝑎 = ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( 𝑥 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
190 |
189
|
rexbidva |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑄 ) ) → ( ∃ 𝑧 ∈ 𝑅 𝑎 = ( ( ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝑅 𝑎 = ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( 𝑥 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |
191 |
190
|
2rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑄 ∃ 𝑧 ∈ 𝑅 𝑎 = ( ( ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝐶 ) +s ( ( 𝐴 ·s 𝐵 ) ·s 𝑧 ) ) -s ( ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) ·s 𝑧 ) ) ↔ ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑄 ∃ 𝑧 ∈ 𝑅 𝑎 = ( ( ( 𝑥 ·s ( 𝐵 ·s 𝐶 ) ) +s ( 𝐴 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) -s ( 𝑥 ·s ( ( ( 𝑦 ·s 𝐶 ) +s ( 𝐵 ·s 𝑧 ) ) -s ( 𝑦 ·s 𝑧 ) ) ) ) ) ) |