| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulscan2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
mulscan2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
mulscan2d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
mulscan2d.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
| 5 |
|
0sno |
⊢ 0s ∈ No |
| 6 |
|
sltneg |
⊢ ( ( 𝐶 ∈ No ∧ 0s ∈ No ) → ( 𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us ‘ 𝐶 ) ) ) |
| 7 |
3 5 6
|
sylancl |
⊢ ( 𝜑 → ( 𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us ‘ 𝐶 ) ) ) |
| 8 |
|
negs0s |
⊢ ( -us ‘ 0s ) = 0s |
| 9 |
8
|
breq1i |
⊢ ( ( -us ‘ 0s ) <s ( -us ‘ 𝐶 ) ↔ 0s <s ( -us ‘ 𝐶 ) ) |
| 10 |
7 9
|
bitrdi |
⊢ ( 𝜑 → ( 𝐶 <s 0s ↔ 0s <s ( -us ‘ 𝐶 ) ) ) |
| 11 |
1 3
|
mulnegs2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( -us ‘ 𝐶 ) ) = ( -us ‘ ( 𝐴 ·s 𝐶 ) ) ) |
| 12 |
2 3
|
mulnegs2d |
⊢ ( 𝜑 → ( 𝐵 ·s ( -us ‘ 𝐶 ) ) = ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ) |
| 13 |
11 12
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐴 ·s ( -us ‘ 𝐶 ) ) = ( 𝐵 ·s ( -us ‘ 𝐶 ) ) ↔ ( -us ‘ ( 𝐴 ·s 𝐶 ) ) = ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ) ) |
| 14 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 15 |
2 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No ) |
| 16 |
|
negs11 |
⊢ ( ( ( 𝐴 ·s 𝐶 ) ∈ No ∧ ( 𝐵 ·s 𝐶 ) ∈ No ) → ( ( -us ‘ ( 𝐴 ·s 𝐶 ) ) = ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ↔ ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ) ) |
| 17 |
14 15 16
|
syl2anc |
⊢ ( 𝜑 → ( ( -us ‘ ( 𝐴 ·s 𝐶 ) ) = ( -us ‘ ( 𝐵 ·s 𝐶 ) ) ↔ ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ) ) |
| 18 |
13 17
|
bitrd |
⊢ ( 𝜑 → ( ( 𝐴 ·s ( -us ‘ 𝐶 ) ) = ( 𝐵 ·s ( -us ‘ 𝐶 ) ) ↔ ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 0s <s ( -us ‘ 𝐶 ) ) → ( ( 𝐴 ·s ( -us ‘ 𝐶 ) ) = ( 𝐵 ·s ( -us ‘ 𝐶 ) ) ↔ ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ) ) |
| 20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0s <s ( -us ‘ 𝐶 ) ) → 𝐴 ∈ No ) |
| 21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0s <s ( -us ‘ 𝐶 ) ) → 𝐵 ∈ No ) |
| 22 |
3
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐶 ) ∈ No ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 0s <s ( -us ‘ 𝐶 ) ) → ( -us ‘ 𝐶 ) ∈ No ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0s <s ( -us ‘ 𝐶 ) ) → 0s <s ( -us ‘ 𝐶 ) ) |
| 25 |
20 21 23 24
|
mulscan2dlem |
⊢ ( ( 𝜑 ∧ 0s <s ( -us ‘ 𝐶 ) ) → ( ( 𝐴 ·s ( -us ‘ 𝐶 ) ) = ( 𝐵 ·s ( -us ‘ 𝐶 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 26 |
19 25
|
bitr3d |
⊢ ( ( 𝜑 ∧ 0s <s ( -us ‘ 𝐶 ) ) → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 27 |
10 26
|
sylbida |
⊢ ( ( 𝜑 ∧ 𝐶 <s 0s ) → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0s <s 𝐶 ) → 𝐴 ∈ No ) |
| 29 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0s <s 𝐶 ) → 𝐵 ∈ No ) |
| 30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0s <s 𝐶 ) → 𝐶 ∈ No ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0s <s 𝐶 ) → 0s <s 𝐶 ) |
| 32 |
28 29 30 31
|
mulscan2dlem |
⊢ ( ( 𝜑 ∧ 0s <s 𝐶 ) → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 33 |
|
slttrine |
⊢ ( ( 𝐶 ∈ No ∧ 0s ∈ No ) → ( 𝐶 ≠ 0s ↔ ( 𝐶 <s 0s ∨ 0s <s 𝐶 ) ) ) |
| 34 |
3 5 33
|
sylancl |
⊢ ( 𝜑 → ( 𝐶 ≠ 0s ↔ ( 𝐶 <s 0s ∨ 0s <s 𝐶 ) ) ) |
| 35 |
4 34
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 <s 0s ∨ 0s <s 𝐶 ) ) |
| 36 |
27 32 35
|
mpjaodan |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |