| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulscan2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
mulscan2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
mulscan2d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
mulscan2dlem.1 |
⊢ ( 𝜑 → 0s <s 𝐶 ) |
| 5 |
1 2 3 4
|
slemul1d |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ) ) |
| 6 |
2 1 3 4
|
slemul1d |
⊢ ( 𝜑 → ( 𝐵 ≤s 𝐴 ↔ ( 𝐵 ·s 𝐶 ) ≤s ( 𝐴 ·s 𝐶 ) ) ) |
| 7 |
5 6
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ↔ ( ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ∧ ( 𝐵 ·s 𝐶 ) ≤s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 8 |
|
sletri3 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ) ) |
| 9 |
1 2 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵 ∧ 𝐵 ≤s 𝐴 ) ) ) |
| 10 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
| 11 |
2 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No ) |
| 12 |
|
sletri3 |
⊢ ( ( ( 𝐴 ·s 𝐶 ) ∈ No ∧ ( 𝐵 ·s 𝐶 ) ∈ No ) → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ ( ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ∧ ( 𝐵 ·s 𝐶 ) ≤s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ ( ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ∧ ( 𝐵 ·s 𝐶 ) ≤s ( 𝐴 ·s 𝐶 ) ) ) ) |
| 14 |
7 9 13
|
3bitr4rd |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |