Metamath Proof Explorer


Theorem mulscan2dlem

Description: Lemma for mulscan2d . Cancellation of multiplication when the right term is positive. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Hypotheses mulscan2d.1 ( 𝜑𝐴 No )
mulscan2d.2 ( 𝜑𝐵 No )
mulscan2d.3 ( 𝜑𝐶 No )
mulscan2dlem.1 ( 𝜑 → 0s <s 𝐶 )
Assertion mulscan2dlem ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mulscan2d.1 ( 𝜑𝐴 No )
2 mulscan2d.2 ( 𝜑𝐵 No )
3 mulscan2d.3 ( 𝜑𝐶 No )
4 mulscan2dlem.1 ( 𝜑 → 0s <s 𝐶 )
5 1 2 3 4 slemul1d ( 𝜑 → ( 𝐴 ≤s 𝐵 ↔ ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ) )
6 2 1 3 4 slemul1d ( 𝜑 → ( 𝐵 ≤s 𝐴 ↔ ( 𝐵 ·s 𝐶 ) ≤s ( 𝐴 ·s 𝐶 ) ) )
7 5 6 anbi12d ( 𝜑 → ( ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ↔ ( ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ∧ ( 𝐵 ·s 𝐶 ) ≤s ( 𝐴 ·s 𝐶 ) ) ) )
8 sletri3 ( ( 𝐴 No 𝐵 No ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ) )
9 1 2 8 syl2anc ( 𝜑 → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤s 𝐵𝐵 ≤s 𝐴 ) ) )
10 1 3 mulscld ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No )
11 2 3 mulscld ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No )
12 sletri3 ( ( ( 𝐴 ·s 𝐶 ) ∈ No ∧ ( 𝐵 ·s 𝐶 ) ∈ No ) → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ ( ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ∧ ( 𝐵 ·s 𝐶 ) ≤s ( 𝐴 ·s 𝐶 ) ) ) )
13 10 11 12 syl2anc ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ ( ( 𝐴 ·s 𝐶 ) ≤s ( 𝐵 ·s 𝐶 ) ∧ ( 𝐵 ·s 𝐶 ) ≤s ( 𝐴 ·s 𝐶 ) ) ) )
14 7 9 13 3bitr4rd ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) = ( 𝐵 ·s 𝐶 ) ↔ 𝐴 = 𝐵 ) )