Metamath Proof Explorer


Theorem mulscld

Description: The surreals are closed under multiplication. Theorem 8(i) of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)

Ref Expression
Hypotheses mulscld.1 ( 𝜑𝐴 No )
mulscld.2 ( 𝜑𝐵 No )
Assertion mulscld ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 mulscld.1 ( 𝜑𝐴 No )
2 mulscld.2 ( 𝜑𝐵 No )
3 mulscl ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) ∈ No )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No )