Metamath Proof Explorer


Theorem mulscomd

Description: Surreal multiplication commutes. Part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)

Ref Expression
Hypotheses mulscomd.1 ( 𝜑𝐴 No )
mulscomd.2 ( 𝜑𝐵 No )
Assertion mulscomd ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( 𝐵 ·s 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mulscomd.1 ( 𝜑𝐴 No )
2 mulscomd.2 ( 𝜑𝐵 No )
3 mulscom ( ( 𝐴 No 𝐵 No ) → ( 𝐴 ·s 𝐵 ) = ( 𝐵 ·s 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 ·s 𝐵 ) = ( 𝐵 ·s 𝐴 ) )