Metamath Proof Explorer


Theorem mulscut

Description: Show the cut properties of surreal multiplication. (Contributed by Scott Fenton, 8-Mar-2025)

Ref Expression
Hypotheses mulscut.1 ( 𝜑𝐴 No )
mulscut.2 ( 𝜑𝐵 No )
Assertion mulscut ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )

Proof

Step Hyp Ref Expression
1 mulscut.1 ( 𝜑𝐴 No )
2 mulscut.2 ( 𝜑𝐵 No )
3 1 2 mulscutlem ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ) ) -s ( 𝑔 ·s ) ) } ∪ { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) )
4 biid ( ( 𝐴 ·s 𝐵 ) ∈ No ↔ ( 𝐴 ·s 𝐵 ) ∈ No )
5 mulsval2lem { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ) ) -s ( 𝑔 ·s ) ) }
6 mulsval2lem { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) }
7 5 6 uneq12i ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ) ) -s ( 𝑔 ·s ) ) } ∪ { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } )
8 7 breq1i ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ↔ ( { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ) ) -s ( 𝑔 ·s ) ) } ∪ { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } )
9 mulsval2lem { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) }
10 mulsval2lem { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) }
11 9 10 uneq12i ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } )
12 11 breq2i ( { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) )
13 4 8 12 3anbi123i ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ) ) -s ( 𝑔 ·s ) ) } ∪ { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) )
14 3 13 sylibr ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) )