Step |
Hyp |
Ref |
Expression |
1 |
|
mulscut.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
mulscut.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
1 2
|
mulscutlem |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ℎ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ℎ ) ) -s ( 𝑔 ·s ℎ ) ) } ∪ { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) ) |
4 |
|
biid |
⊢ ( ( 𝐴 ·s 𝐵 ) ∈ No ↔ ( 𝐴 ·s 𝐵 ) ∈ No ) |
5 |
|
mulsval2lem |
⊢ { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } = { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ℎ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ℎ ) ) -s ( 𝑔 ·s ℎ ) ) } |
6 |
|
mulsval2lem |
⊢ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } = { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } |
7 |
5 6
|
uneq12i |
⊢ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) = ( { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ℎ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ℎ ) ) -s ( 𝑔 ·s ℎ ) ) } ∪ { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } ) |
8 |
7
|
breq1i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ↔ ( { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ℎ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ℎ ) ) -s ( 𝑔 ·s ℎ ) ) } ∪ { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ) |
9 |
|
mulsval2lem |
⊢ { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } = { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } |
10 |
|
mulsval2lem |
⊢ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } = { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } |
11 |
9 10
|
uneq12i |
⊢ ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) = ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) |
12 |
11
|
breq2i |
⊢ ( { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ↔ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) |
13 |
4 8 12
|
3anbi123i |
⊢ ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑓 ∣ ∃ 𝑔 ∈ ( L ‘ 𝐴 ) ∃ ℎ ∈ ( L ‘ 𝐵 ) 𝑓 = ( ( ( 𝑔 ·s 𝐵 ) +s ( 𝐴 ·s ℎ ) ) -s ( 𝑔 ·s ℎ ) ) } ∪ { 𝑖 ∣ ∃ 𝑗 ∈ ( R ‘ 𝐴 ) ∃ 𝑘 ∈ ( R ‘ 𝐵 ) 𝑖 = ( ( ( 𝑗 ·s 𝐵 ) +s ( 𝐴 ·s 𝑘 ) ) -s ( 𝑗 ·s 𝑘 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑙 ∣ ∃ 𝑚 ∈ ( L ‘ 𝐴 ) ∃ 𝑛 ∈ ( R ‘ 𝐵 ) 𝑙 = ( ( ( 𝑚 ·s 𝐵 ) +s ( 𝐴 ·s 𝑛 ) ) -s ( 𝑚 ·s 𝑛 ) ) } ∪ { 𝑜 ∣ ∃ 𝑥 ∈ ( R ‘ 𝐴 ) ∃ 𝑦 ∈ ( L ‘ 𝐵 ) 𝑜 = ( ( ( 𝑥 ·s 𝐵 ) +s ( 𝐴 ·s 𝑦 ) ) -s ( 𝑥 ·s 𝑦 ) ) } ) ) ) |
14 |
3 13
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( { 𝑎 ∣ ∃ 𝑝 ∈ ( L ‘ 𝐴 ) ∃ 𝑞 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑝 ·s 𝐵 ) +s ( 𝐴 ·s 𝑞 ) ) -s ( 𝑝 ·s 𝑞 ) ) } ∪ { 𝑏 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) ∃ 𝑠 ∈ ( R ‘ 𝐵 ) 𝑏 = ( ( ( 𝑟 ·s 𝐵 ) +s ( 𝐴 ·s 𝑠 ) ) -s ( 𝑟 ·s 𝑠 ) ) } ) <<s { ( 𝐴 ·s 𝐵 ) } ∧ { ( 𝐴 ·s 𝐵 ) } <<s ( { 𝑐 ∣ ∃ 𝑡 ∈ ( L ‘ 𝐴 ) ∃ 𝑢 ∈ ( R ‘ 𝐵 ) 𝑐 = ( ( ( 𝑡 ·s 𝐵 ) +s ( 𝐴 ·s 𝑢 ) ) -s ( 𝑡 ·s 𝑢 ) ) } ∪ { 𝑑 ∣ ∃ 𝑣 ∈ ( R ‘ 𝐴 ) ∃ 𝑤 ∈ ( L ‘ 𝐵 ) 𝑑 = ( ( ( 𝑣 ·s 𝐵 ) +s ( 𝐴 ·s 𝑤 ) ) -s ( 𝑣 ·s 𝑤 ) ) } ) ) ) |