Metamath Proof Explorer


Theorem mulsgt0d

Description: The product of two positive surreals is positive. Theorem 9 of Conway p. 20. (Contributed by Scott Fenton, 6-Mar-2025)

Ref Expression
Hypotheses mulsgt0d.1 ( 𝜑𝐴 No )
mulsgt0d.2 ( 𝜑𝐵 No )
mulsgt0d.3 ( 𝜑 → 0s <s 𝐴 )
mulsgt0d.4 ( 𝜑 → 0s <s 𝐵 )
Assertion mulsgt0d ( 𝜑 → 0s <s ( 𝐴 ·s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 mulsgt0d.1 ( 𝜑𝐴 No )
2 mulsgt0d.2 ( 𝜑𝐵 No )
3 mulsgt0d.3 ( 𝜑 → 0s <s 𝐴 )
4 mulsgt0d.4 ( 𝜑 → 0s <s 𝐵 )
5 mulsgt0 ( ( ( 𝐴 No ∧ 0s <s 𝐴 ) ∧ ( 𝐵 No ∧ 0s <s 𝐵 ) ) → 0s <s ( 𝐴 ·s 𝐵 ) )
6 1 3 2 4 5 syl22anc ( 𝜑 → 0s <s ( 𝐴 ·s 𝐵 ) )