Metamath Proof Explorer
Description: The product of two positive surreals is positive. Theorem 9 of Conway
p. 20. (Contributed by Scott Fenton, 6-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
mulsgt0d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
mulsgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
mulsgt0d.3 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
|
|
mulsgt0d.4 |
⊢ ( 𝜑 → 0s <s 𝐵 ) |
|
Assertion |
mulsgt0d |
⊢ ( 𝜑 → 0s <s ( 𝐴 ·s 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mulsgt0d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
mulsgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
mulsgt0d.3 |
⊢ ( 𝜑 → 0s <s 𝐴 ) |
4 |
|
mulsgt0d.4 |
⊢ ( 𝜑 → 0s <s 𝐵 ) |
5 |
|
mulsgt0 |
⊢ ( ( ( 𝐴 ∈ No ∧ 0s <s 𝐴 ) ∧ ( 𝐵 ∈ No ∧ 0s <s 𝐵 ) ) → 0s <s ( 𝐴 ·s 𝐵 ) ) |
6 |
1 3 2 4 5
|
syl22anc |
⊢ ( 𝜑 → 0s <s ( 𝐴 ·s 𝐵 ) ) |