Metamath Proof Explorer


Theorem mulsne0bd

Description: The product of two non-zero surreals is non-zero. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses muls0ord.1 ( 𝜑𝐴 No )
muls0ord.2 ( 𝜑𝐵 No )
Assertion mulsne0bd ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ≠ 0s ↔ ( 𝐴 ≠ 0s𝐵 ≠ 0s ) ) )

Proof

Step Hyp Ref Expression
1 muls0ord.1 ( 𝜑𝐴 No )
2 muls0ord.2 ( 𝜑𝐵 No )
3 1 2 muls0ord ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) = 0s ↔ ( 𝐴 = 0s𝐵 = 0s ) ) )
4 3 necon3abid ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ≠ 0s ↔ ¬ ( 𝐴 = 0s𝐵 = 0s ) ) )
5 neanior ( ( 𝐴 ≠ 0s𝐵 ≠ 0s ) ↔ ¬ ( 𝐴 = 0s𝐵 = 0s ) )
6 4 5 bitr4di ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) ≠ 0s ↔ ( 𝐴 ≠ 0s𝐵 ≠ 0s ) ) )