Metamath Proof Explorer


Theorem mulsprop

Description: Surreals are closed under multiplication and obey a particular ordering law. Theorem 3.4 of Gonshor p. 17. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Assertion mulsprop ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ∧ ( 𝐸 No 𝐹 No ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 bdayelon ( bday 𝐴 ) ∈ On
2 bdayelon ( bday 𝐵 ) ∈ On
3 naddcl ( ( ( bday 𝐴 ) ∈ On ∧ ( bday 𝐵 ) ∈ On ) → ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On )
4 1 2 3 mp2an ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∈ On
5 bdayelon ( bday 𝐶 ) ∈ On
6 bdayelon ( bday 𝐸 ) ∈ On
7 naddcl ( ( ( bday 𝐶 ) ∈ On ∧ ( bday 𝐸 ) ∈ On ) → ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∈ On )
8 5 6 7 mp2an ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∈ On
9 bdayelon ( bday 𝐷 ) ∈ On
10 bdayelon ( bday 𝐹 ) ∈ On
11 naddcl ( ( ( bday 𝐷 ) ∈ On ∧ ( bday 𝐹 ) ∈ On ) → ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ∈ On )
12 9 10 11 mp2an ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ∈ On
13 8 12 onun2i ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∈ On
14 naddcl ( ( ( bday 𝐶 ) ∈ On ∧ ( bday 𝐹 ) ∈ On ) → ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∈ On )
15 5 10 14 mp2an ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∈ On
16 naddcl ( ( ( bday 𝐷 ) ∈ On ∧ ( bday 𝐸 ) ∈ On ) → ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ∈ On )
17 9 6 16 mp2an ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ∈ On
18 15 17 onun2i ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ∈ On
19 13 18 onun2i ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ∈ On
20 4 19 onun2i ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ∈ On
21 risset ( ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ∈ On ↔ ∃ 𝑥 ∈ On 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
22 20 21 mpbi 𝑥 ∈ On 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) )
23 fveq2 ( 𝑎 = 𝑔 → ( bday 𝑎 ) = ( bday 𝑔 ) )
24 23 oveq1d ( 𝑎 = 𝑔 → ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) = ( ( bday 𝑔 ) +no ( bday 𝑏 ) ) )
25 24 uneq1d ( 𝑎 = 𝑔 → ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑔 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) )
26 25 eqeq2d ( 𝑎 = 𝑔 → ( 𝑥 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝑔 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ) )
27 oveq1 ( 𝑎 = 𝑔 → ( 𝑎 ·s 𝑏 ) = ( 𝑔 ·s 𝑏 ) )
28 27 eleq1d ( 𝑎 = 𝑔 → ( ( 𝑎 ·s 𝑏 ) ∈ No ↔ ( 𝑔 ·s 𝑏 ) ∈ No ) )
29 28 anbi1d ( 𝑎 = 𝑔 → ( ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑔 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
30 26 29 imbi12d ( 𝑎 = 𝑔 → ( ( 𝑥 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑔 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
31 fveq2 ( 𝑏 = → ( bday 𝑏 ) = ( bday ) )
32 31 oveq2d ( 𝑏 = → ( ( bday 𝑔 ) +no ( bday 𝑏 ) ) = ( ( bday 𝑔 ) +no ( bday ) ) )
33 32 uneq1d ( 𝑏 = → ( ( ( bday 𝑔 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) )
34 33 eqeq2d ( 𝑏 = → ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ) )
35 oveq2 ( 𝑏 = → ( 𝑔 ·s 𝑏 ) = ( 𝑔 ·s ) )
36 35 eleq1d ( 𝑏 = → ( ( 𝑔 ·s 𝑏 ) ∈ No ↔ ( 𝑔 ·s ) ∈ No ) )
37 36 anbi1d ( 𝑏 = → ( ( ( 𝑔 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
38 34 37 imbi12d ( 𝑏 = → ( ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑔 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
39 fveq2 ( 𝑐 = 𝑖 → ( bday 𝑐 ) = ( bday 𝑖 ) )
40 39 oveq1d ( 𝑐 = 𝑖 → ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) = ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) )
41 40 uneq1d ( 𝑐 = 𝑖 → ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) = ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) )
42 39 oveq1d ( 𝑐 = 𝑖 → ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) = ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) )
43 42 uneq1d ( 𝑐 = 𝑖 → ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) = ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) )
44 41 43 uneq12d ( 𝑐 = 𝑖 → ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) = ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) )
45 44 uneq2d ( 𝑐 = 𝑖 → ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) )
46 45 eqeq2d ( 𝑐 = 𝑖 → ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ) )
47 breq1 ( 𝑐 = 𝑖 → ( 𝑐 <s 𝑑𝑖 <s 𝑑 ) )
48 47 anbi1d ( 𝑐 = 𝑖 → ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) ↔ ( 𝑖 <s 𝑑𝑒 <s 𝑓 ) ) )
49 oveq1 ( 𝑐 = 𝑖 → ( 𝑐 ·s 𝑓 ) = ( 𝑖 ·s 𝑓 ) )
50 oveq1 ( 𝑐 = 𝑖 → ( 𝑐 ·s 𝑒 ) = ( 𝑖 ·s 𝑒 ) )
51 49 50 oveq12d ( 𝑐 = 𝑖 → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) = ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) )
52 51 breq1d ( 𝑐 = 𝑖 → ( ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ↔ ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) )
53 48 52 imbi12d ( 𝑐 = 𝑖 → ( ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ↔ ( ( 𝑖 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) )
54 53 anbi2d ( 𝑐 = 𝑖 → ( ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
55 46 54 imbi12d ( 𝑐 = 𝑖 → ( ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
56 fveq2 ( 𝑑 = 𝑗 → ( bday 𝑑 ) = ( bday 𝑗 ) )
57 56 oveq1d ( 𝑑 = 𝑗 → ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) = ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) )
58 57 uneq2d ( 𝑑 = 𝑗 → ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) = ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) )
59 56 oveq1d ( 𝑑 = 𝑗 → ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) = ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) )
60 59 uneq2d ( 𝑑 = 𝑗 → ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) = ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) )
61 58 60 uneq12d ( 𝑑 = 𝑗 → ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) = ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) ) )
62 61 uneq2d ( 𝑑 = 𝑗 → ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) ) ) )
63 62 eqeq2d ( 𝑑 = 𝑗 → ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) ) ) ) )
64 breq2 ( 𝑑 = 𝑗 → ( 𝑖 <s 𝑑𝑖 <s 𝑗 ) )
65 64 anbi1d ( 𝑑 = 𝑗 → ( ( 𝑖 <s 𝑑𝑒 <s 𝑓 ) ↔ ( 𝑖 <s 𝑗𝑒 <s 𝑓 ) ) )
66 oveq1 ( 𝑑 = 𝑗 → ( 𝑑 ·s 𝑓 ) = ( 𝑗 ·s 𝑓 ) )
67 oveq1 ( 𝑑 = 𝑗 → ( 𝑑 ·s 𝑒 ) = ( 𝑗 ·s 𝑒 ) )
68 66 67 oveq12d ( 𝑑 = 𝑗 → ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) = ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) )
69 68 breq2d ( 𝑑 = 𝑗 → ( ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ↔ ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) ) )
70 65 69 imbi12d ( 𝑑 = 𝑗 → ( ( ( 𝑖 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ↔ ( ( 𝑖 <s 𝑗𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) ) ) )
71 70 anbi2d ( 𝑑 = 𝑗 → ( ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) ) ) ) )
72 63 71 imbi12d ( 𝑑 = 𝑗 → ( ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) ) ) ) ) )
73 fveq2 ( 𝑒 = 𝑘 → ( bday 𝑒 ) = ( bday 𝑘 ) )
74 73 oveq2d ( 𝑒 = 𝑘 → ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) = ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) )
75 74 uneq1d ( 𝑒 = 𝑘 → ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) = ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) )
76 73 oveq2d ( 𝑒 = 𝑘 → ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) = ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) )
77 76 uneq2d ( 𝑒 = 𝑘 → ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) = ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) )
78 75 77 uneq12d ( 𝑒 = 𝑘 → ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) ) = ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) )
79 78 uneq2d ( 𝑒 = 𝑘 → ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) )
80 79 eqeq2d ( 𝑒 = 𝑘 → ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ) )
81 breq1 ( 𝑒 = 𝑘 → ( 𝑒 <s 𝑓𝑘 <s 𝑓 ) )
82 81 anbi2d ( 𝑒 = 𝑘 → ( ( 𝑖 <s 𝑗𝑒 <s 𝑓 ) ↔ ( 𝑖 <s 𝑗𝑘 <s 𝑓 ) ) )
83 oveq2 ( 𝑒 = 𝑘 → ( 𝑖 ·s 𝑒 ) = ( 𝑖 ·s 𝑘 ) )
84 83 oveq2d ( 𝑒 = 𝑘 → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) = ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) )
85 oveq2 ( 𝑒 = 𝑘 → ( 𝑗 ·s 𝑒 ) = ( 𝑗 ·s 𝑘 ) )
86 85 oveq2d ( 𝑒 = 𝑘 → ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) = ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) )
87 84 86 breq12d ( 𝑒 = 𝑘 → ( ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) ↔ ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) ) )
88 82 87 imbi12d ( 𝑒 = 𝑘 → ( ( ( 𝑖 <s 𝑗𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) ) ↔ ( ( 𝑖 <s 𝑗𝑘 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) )
89 88 anbi2d ( 𝑒 = 𝑘 → ( ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
90 80 89 imbi12d ( 𝑒 = 𝑘 → ( ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑒 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑒 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑒 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ) )
91 fveq2 ( 𝑓 = 𝑙 → ( bday 𝑓 ) = ( bday 𝑙 ) )
92 91 oveq2d ( 𝑓 = 𝑙 → ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) = ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) )
93 92 uneq2d ( 𝑓 = 𝑙 → ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) = ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) )
94 91 oveq2d ( 𝑓 = 𝑙 → ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) = ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) )
95 94 uneq1d ( 𝑓 = 𝑙 → ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) = ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) )
96 93 95 uneq12d ( 𝑓 = 𝑙 → ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) = ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) )
97 96 uneq2d ( 𝑓 = 𝑙 → ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) )
98 97 eqeq2d ( 𝑓 = 𝑙 → ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ) )
99 breq2 ( 𝑓 = 𝑙 → ( 𝑘 <s 𝑓𝑘 <s 𝑙 ) )
100 99 anbi2d ( 𝑓 = 𝑙 → ( ( 𝑖 <s 𝑗𝑘 <s 𝑓 ) ↔ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) )
101 oveq2 ( 𝑓 = 𝑙 → ( 𝑖 ·s 𝑓 ) = ( 𝑖 ·s 𝑙 ) )
102 101 oveq1d ( 𝑓 = 𝑙 → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) = ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) )
103 oveq2 ( 𝑓 = 𝑙 → ( 𝑗 ·s 𝑓 ) = ( 𝑗 ·s 𝑙 ) )
104 103 oveq1d ( 𝑓 = 𝑙 → ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) = ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) )
105 102 104 breq12d ( 𝑓 = 𝑙 → ( ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) ↔ ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) )
106 100 105 imbi12d ( 𝑓 = 𝑙 → ( ( ( 𝑖 <s 𝑗𝑘 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) ) ↔ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) )
107 106 anbi2d ( 𝑓 = 𝑙 → ( ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ↔ ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
108 98 107 imbi12d ( 𝑓 = 𝑙 → ( ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑓 ) → ( ( 𝑖 ·s 𝑓 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑓 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ) )
109 30 38 55 72 90 108 cbvral6vw ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑥 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
110 eqeq1 ( 𝑥 = 𝑦 → ( 𝑥 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ↔ 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ) )
111 110 imbi1d ( 𝑥 = 𝑦 → ( ( 𝑥 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
112 111 6ralbidv ( 𝑥 = 𝑦 → ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑥 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
113 109 112 bitr3id ( 𝑥 = 𝑦 → ( ∀ 𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ↔ ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
114 raleq ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
115 ralrot3 ( ∀ 𝑎 No 𝑏 No 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
116 ralrot3 ( ∀ 𝑐 No 𝑑 No 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
117 ralrot3 ( ∀ 𝑒 No 𝑓 No 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
118 r19.23v ( ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( ∃ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
119 risset ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ↔ ∃ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) )
120 119 imbi1i ( ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( ∃ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
121 118 120 bitr4i ( ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
122 121 2ralbii ( ∀ 𝑒 No 𝑓 No 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
123 117 122 bitr3i ( ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
124 123 2ralbii ( ∀ 𝑐 No 𝑑 No 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
125 116 124 bitr3i ( ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
126 125 2ralbii ( ∀ 𝑎 No 𝑏 No 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
127 115 126 bitr3i ( ∀ 𝑦 ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
128 114 127 bitrdi ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
129 simpl ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
130 simprl1 ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → 𝑔 No )
131 simprl2 ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → No )
132 129 130 131 mulsproplem11 ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → ( 𝑔 ·s ) ∈ No )
133 129 adantr ( ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) ∧ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
134 simprl3 ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → 𝑖 No )
135 134 adantr ( ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) ∧ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) → 𝑖 No )
136 simprr1 ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → 𝑗 No )
137 136 adantr ( ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) ∧ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) → 𝑗 No )
138 simprr2 ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → 𝑘 No )
139 138 adantr ( ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) ∧ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) → 𝑘 No )
140 simprr3 ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → 𝑙 No )
141 140 adantr ( ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) ∧ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) → 𝑙 No )
142 simprl ( ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) ∧ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) → 𝑖 <s 𝑗 )
143 simprr ( ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) ∧ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) → 𝑘 <s 𝑙 )
144 133 135 137 139 141 142 143 mulsproplem14 ( ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) ∧ ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) )
145 144 ex ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) )
146 132 145 jca ( ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) )
147 146 ex ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) → ( ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
148 128 147 biimtrdi ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) → ( ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ) )
149 148 impd ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
150 149 com12 ( ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( ( 𝑔 No No 𝑖 No ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) ) → ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
151 150 anassrs ( ( ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( 𝑔 No No 𝑖 No ) ) ∧ ( 𝑗 No 𝑘 No 𝑙 No ) ) → ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
152 151 ralrimivvva ( ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ∧ ( 𝑔 No No 𝑖 No ) ) → ∀ 𝑗 No 𝑘 No 𝑙 No ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
153 152 ralrimivvva ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) → ∀ 𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
154 153 a1i ( 𝑥 ∈ On → ( ∀ 𝑦𝑥𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( 𝑦 = ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) → ∀ 𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ) )
155 113 154 tfis2 ( 𝑥 ∈ On → ∀ 𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
156 fveq2 ( 𝑔 = 𝐴 → ( bday 𝑔 ) = ( bday 𝐴 ) )
157 156 oveq1d ( 𝑔 = 𝐴 → ( ( bday 𝑔 ) +no ( bday ) ) = ( ( bday 𝐴 ) +no ( bday ) ) )
158 157 uneq1d ( 𝑔 = 𝐴 → ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) = ( ( ( bday 𝐴 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) )
159 158 eqeq2d ( 𝑔 = 𝐴 → ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝐴 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ) )
160 oveq1 ( 𝑔 = 𝐴 → ( 𝑔 ·s ) = ( 𝐴 ·s ) )
161 160 eleq1d ( 𝑔 = 𝐴 → ( ( 𝑔 ·s ) ∈ No ↔ ( 𝐴 ·s ) ∈ No ) )
162 161 anbi1d ( 𝑔 = 𝐴 → ( ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ↔ ( ( 𝐴 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
163 159 162 imbi12d ( 𝑔 = 𝐴 → ( ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝐴 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ) )
164 fveq2 ( = 𝐵 → ( bday ) = ( bday 𝐵 ) )
165 164 oveq2d ( = 𝐵 → ( ( bday 𝐴 ) +no ( bday ) ) = ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) )
166 165 uneq1d ( = 𝐵 → ( ( ( bday 𝐴 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) )
167 166 eqeq2d ( = 𝐵 → ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ) )
168 oveq2 ( = 𝐵 → ( 𝐴 ·s ) = ( 𝐴 ·s 𝐵 ) )
169 168 eleq1d ( = 𝐵 → ( ( 𝐴 ·s ) ∈ No ↔ ( 𝐴 ·s 𝐵 ) ∈ No ) )
170 169 anbi1d ( = 𝐵 → ( ( ( 𝐴 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
171 167 170 imbi12d ( = 𝐵 → ( ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝐴 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ) )
172 fveq2 ( 𝑖 = 𝐶 → ( bday 𝑖 ) = ( bday 𝐶 ) )
173 172 oveq1d ( 𝑖 = 𝐶 → ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) = ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) )
174 173 uneq1d ( 𝑖 = 𝐶 → ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) = ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) )
175 172 oveq1d ( 𝑖 = 𝐶 → ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) = ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) )
176 175 uneq1d ( 𝑖 = 𝐶 → ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) = ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) )
177 174 176 uneq12d ( 𝑖 = 𝐶 → ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) = ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) )
178 177 uneq2d ( 𝑖 = 𝐶 → ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) )
179 178 eqeq2d ( 𝑖 = 𝐶 → ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ) )
180 breq1 ( 𝑖 = 𝐶 → ( 𝑖 <s 𝑗𝐶 <s 𝑗 ) )
181 180 anbi1d ( 𝑖 = 𝐶 → ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) ↔ ( 𝐶 <s 𝑗𝑘 <s 𝑙 ) ) )
182 oveq1 ( 𝑖 = 𝐶 → ( 𝑖 ·s 𝑙 ) = ( 𝐶 ·s 𝑙 ) )
183 oveq1 ( 𝑖 = 𝐶 → ( 𝑖 ·s 𝑘 ) = ( 𝐶 ·s 𝑘 ) )
184 182 183 oveq12d ( 𝑖 = 𝐶 → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) = ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) )
185 184 breq1d ( 𝑖 = 𝐶 → ( ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ↔ ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) )
186 181 185 imbi12d ( 𝑖 = 𝐶 → ( ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ↔ ( ( 𝐶 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) )
187 186 anbi2d ( 𝑖 = 𝐶 → ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) )
188 179 187 imbi12d ( 𝑖 = 𝐶 → ( ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ) )
189 fveq2 ( 𝑗 = 𝐷 → ( bday 𝑗 ) = ( bday 𝐷 ) )
190 189 oveq1d ( 𝑗 = 𝐷 → ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) = ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) )
191 190 uneq2d ( 𝑗 = 𝐷 → ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) = ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) )
192 189 oveq1d ( 𝑗 = 𝐷 → ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) = ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) )
193 192 uneq2d ( 𝑗 = 𝐷 → ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) = ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) )
194 191 193 uneq12d ( 𝑗 = 𝐷 → ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) = ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) ) )
195 194 uneq2d ( 𝑗 = 𝐷 → ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) ) ) )
196 195 eqeq2d ( 𝑗 = 𝐷 → ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) ) ) ) )
197 breq2 ( 𝑗 = 𝐷 → ( 𝐶 <s 𝑗𝐶 <s 𝐷 ) )
198 197 anbi1d ( 𝑗 = 𝐷 → ( ( 𝐶 <s 𝑗𝑘 <s 𝑙 ) ↔ ( 𝐶 <s 𝐷𝑘 <s 𝑙 ) ) )
199 oveq1 ( 𝑗 = 𝐷 → ( 𝑗 ·s 𝑙 ) = ( 𝐷 ·s 𝑙 ) )
200 oveq1 ( 𝑗 = 𝐷 → ( 𝑗 ·s 𝑘 ) = ( 𝐷 ·s 𝑘 ) )
201 199 200 oveq12d ( 𝑗 = 𝐷 → ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) = ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) )
202 201 breq2d ( 𝑗 = 𝐷 → ( ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ↔ ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) ) )
203 198 202 imbi12d ( 𝑗 = 𝐷 → ( ( ( 𝐶 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ↔ ( ( 𝐶 <s 𝐷𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) ) ) )
204 203 anbi2d ( 𝑗 = 𝐷 → ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) ) ) ) )
205 196 204 imbi12d ( 𝑗 = 𝐷 → ( ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) ) ) ) ) )
206 fveq2 ( 𝑘 = 𝐸 → ( bday 𝑘 ) = ( bday 𝐸 ) )
207 206 oveq2d ( 𝑘 = 𝐸 → ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) = ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) )
208 207 uneq1d ( 𝑘 = 𝐸 → ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) = ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) )
209 206 oveq2d ( 𝑘 = 𝐸 → ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) = ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) )
210 209 uneq2d ( 𝑘 = 𝐸 → ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) = ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) )
211 208 210 uneq12d ( 𝑘 = 𝐸 → ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) ) = ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) )
212 211 uneq2d ( 𝑘 = 𝐸 → ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) ) ) = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
213 212 eqeq2d ( 𝑘 = 𝐸 → ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ) )
214 breq1 ( 𝑘 = 𝐸 → ( 𝑘 <s 𝑙𝐸 <s 𝑙 ) )
215 214 anbi2d ( 𝑘 = 𝐸 → ( ( 𝐶 <s 𝐷𝑘 <s 𝑙 ) ↔ ( 𝐶 <s 𝐷𝐸 <s 𝑙 ) ) )
216 oveq2 ( 𝑘 = 𝐸 → ( 𝐶 ·s 𝑘 ) = ( 𝐶 ·s 𝐸 ) )
217 216 oveq2d ( 𝑘 = 𝐸 → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) = ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) )
218 oveq2 ( 𝑘 = 𝐸 → ( 𝐷 ·s 𝑘 ) = ( 𝐷 ·s 𝐸 ) )
219 218 oveq2d ( 𝑘 = 𝐸 → ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) = ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) )
220 217 219 breq12d ( 𝑘 = 𝐸 → ( ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) ↔ ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) ) )
221 215 220 imbi12d ( 𝑘 = 𝐸 → ( ( ( 𝐶 <s 𝐷𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) ) ↔ ( ( 𝐶 <s 𝐷𝐸 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) )
222 221 anbi2d ( 𝑘 = 𝐸 → ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) )
223 213 222 imbi12d ( 𝑘 = 𝐸 → ( ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝑘 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝑘 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝑘 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) ) )
224 fveq2 ( 𝑙 = 𝐹 → ( bday 𝑙 ) = ( bday 𝐹 ) )
225 224 oveq2d ( 𝑙 = 𝐹 → ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) = ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) )
226 225 uneq2d ( 𝑙 = 𝐹 → ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) = ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) )
227 224 oveq2d ( 𝑙 = 𝐹 → ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) = ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) )
228 227 uneq1d ( 𝑙 = 𝐹 → ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) = ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) )
229 226 228 uneq12d ( 𝑙 = 𝐹 → ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) = ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) )
230 229 uneq2d ( 𝑙 = 𝐹 → ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
231 230 eqeq2d ( 𝑙 = 𝐹 → ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ↔ 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ) )
232 breq2 ( 𝑙 = 𝐹 → ( 𝐸 <s 𝑙𝐸 <s 𝐹 ) )
233 232 anbi2d ( 𝑙 = 𝐹 → ( ( 𝐶 <s 𝐷𝐸 <s 𝑙 ) ↔ ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) ) )
234 oveq2 ( 𝑙 = 𝐹 → ( 𝐶 ·s 𝑙 ) = ( 𝐶 ·s 𝐹 ) )
235 234 oveq1d ( 𝑙 = 𝐹 → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) = ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) )
236 oveq2 ( 𝑙 = 𝐹 → ( 𝐷 ·s 𝑙 ) = ( 𝐷 ·s 𝐹 ) )
237 236 oveq1d ( 𝑙 = 𝐹 → ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) = ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) )
238 235 237 breq12d ( 𝑙 = 𝐹 → ( ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) ↔ ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) )
239 233 238 imbi12d ( 𝑙 = 𝐹 → ( ( ( 𝐶 <s 𝐷𝐸 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) ) ↔ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) )
240 239 anbi2d ( 𝑙 = 𝐹 → ( ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ↔ ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) )
241 231 240 imbi12d ( 𝑙 = 𝐹 → ( ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝑙 ) → ( ( 𝐶 ·s 𝑙 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝑙 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) ↔ ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) ) )
242 163 171 188 205 223 241 rspc6v ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ∧ ( 𝐸 No 𝐹 No ) ) → ( ∀ 𝑔 No No 𝑖 No 𝑗 No 𝑘 No 𝑙 No ( 𝑥 = ( ( ( bday 𝑔 ) +no ( bday ) ) ∪ ( ( ( ( bday 𝑖 ) +no ( bday 𝑘 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑙 ) ) ) ∪ ( ( ( bday 𝑖 ) +no ( bday 𝑙 ) ) ∪ ( ( bday 𝑗 ) +no ( bday 𝑘 ) ) ) ) ) → ( ( 𝑔 ·s ) ∈ No ∧ ( ( 𝑖 <s 𝑗𝑘 <s 𝑙 ) → ( ( 𝑖 ·s 𝑙 ) -s ( 𝑖 ·s 𝑘 ) ) <s ( ( 𝑗 ·s 𝑙 ) -s ( 𝑗 ·s 𝑘 ) ) ) ) ) → ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) ) )
243 155 242 syl5com ( 𝑥 ∈ On → ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ∧ ( 𝐸 No 𝐹 No ) ) → ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) ) )
244 243 com23 ( 𝑥 ∈ On → ( 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ∧ ( 𝐸 No 𝐹 No ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) ) )
245 244 rexlimiv ( ∃ 𝑥 ∈ On 𝑥 = ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ∧ ( 𝐸 No 𝐹 No ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) ) )
246 22 245 ax-mp ( ( ( 𝐴 No 𝐵 No ) ∧ ( 𝐶 No 𝐷 No ) ∧ ( 𝐸 No 𝐹 No ) ) → ( ( 𝐴 ·s 𝐵 ) ∈ No ∧ ( ( 𝐶 <s 𝐷𝐸 <s 𝐹 ) → ( ( 𝐶 ·s 𝐹 ) -s ( 𝐶 ·s 𝐸 ) ) <s ( ( 𝐷 ·s 𝐹 ) -s ( 𝐷 ·s 𝐸 ) ) ) ) )