Metamath Proof Explorer


Theorem mulsproplem1

Description: Lemma for surreal multiplication. Instantiate some variables. (Contributed by Scott Fenton, 4-Mar-2025)

Ref Expression
Hypotheses mulsproplem.1 ( 𝜑 → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
mulsproplem1.1 ( 𝜑𝑋 No )
mulsproplem1.2 ( 𝜑𝑌 No )
mulsproplem1.3 ( 𝜑𝑍 No )
mulsproplem1.4 ( 𝜑𝑊 No )
mulsproplem1.5 ( 𝜑𝑇 No )
mulsproplem1.6 ( 𝜑𝑈 No )
mulsproplem1.7 ( 𝜑 → ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
Assertion mulsproplem1 ( 𝜑 → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑈 ) → ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mulsproplem.1 ( 𝜑 → ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
2 mulsproplem1.1 ( 𝜑𝑋 No )
3 mulsproplem1.2 ( 𝜑𝑌 No )
4 mulsproplem1.3 ( 𝜑𝑍 No )
5 mulsproplem1.4 ( 𝜑𝑊 No )
6 mulsproplem1.5 ( 𝜑𝑇 No )
7 mulsproplem1.6 ( 𝜑𝑈 No )
8 mulsproplem1.7 ( 𝜑 → ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) )
9 fveq2 ( 𝑎 = 𝑋 → ( bday 𝑎 ) = ( bday 𝑋 ) )
10 9 oveq1d ( 𝑎 = 𝑋 → ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) = ( ( bday 𝑋 ) +no ( bday 𝑏 ) ) )
11 10 uneq1d ( 𝑎 = 𝑋 → ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) )
12 11 eleq1d ( 𝑎 = 𝑋 → ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ↔ ( ( ( bday 𝑋 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ) )
13 oveq1 ( 𝑎 = 𝑋 → ( 𝑎 ·s 𝑏 ) = ( 𝑋 ·s 𝑏 ) )
14 13 eleq1d ( 𝑎 = 𝑋 → ( ( 𝑎 ·s 𝑏 ) ∈ No ↔ ( 𝑋 ·s 𝑏 ) ∈ No ) )
15 14 anbi1d ( 𝑎 = 𝑋 → ( ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑋 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
16 12 15 imbi12d ( 𝑎 = 𝑋 → ( ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( ( ( ( bday 𝑋 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
17 fveq2 ( 𝑏 = 𝑌 → ( bday 𝑏 ) = ( bday 𝑌 ) )
18 17 oveq2d ( 𝑏 = 𝑌 → ( ( bday 𝑋 ) +no ( bday 𝑏 ) ) = ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) )
19 18 uneq1d ( 𝑏 = 𝑌 → ( ( ( bday 𝑋 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) )
20 19 eleq1d ( 𝑏 = 𝑌 → ( ( ( ( bday 𝑋 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ↔ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ) )
21 oveq2 ( 𝑏 = 𝑌 → ( 𝑋 ·s 𝑏 ) = ( 𝑋 ·s 𝑌 ) )
22 21 eleq1d ( 𝑏 = 𝑌 → ( ( 𝑋 ·s 𝑏 ) ∈ No ↔ ( 𝑋 ·s 𝑌 ) ∈ No ) )
23 22 anbi1d ( 𝑏 = 𝑌 → ( ( ( 𝑋 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
24 20 23 imbi12d ( 𝑏 = 𝑌 → ( ( ( ( ( bday 𝑋 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
25 fveq2 ( 𝑐 = 𝑍 → ( bday 𝑐 ) = ( bday 𝑍 ) )
26 25 oveq1d ( 𝑐 = 𝑍 → ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) = ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) )
27 26 uneq1d ( 𝑐 = 𝑍 → ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) = ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) )
28 25 oveq1d ( 𝑐 = 𝑍 → ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) = ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) )
29 28 uneq1d ( 𝑐 = 𝑍 → ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) = ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) )
30 27 29 uneq12d ( 𝑐 = 𝑍 → ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) = ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) )
31 30 uneq2d ( 𝑐 = 𝑍 → ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) )
32 31 eleq1d ( 𝑐 = 𝑍 → ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ↔ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ) )
33 breq1 ( 𝑐 = 𝑍 → ( 𝑐 <s 𝑑𝑍 <s 𝑑 ) )
34 33 anbi1d ( 𝑐 = 𝑍 → ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) ↔ ( 𝑍 <s 𝑑𝑒 <s 𝑓 ) ) )
35 oveq1 ( 𝑐 = 𝑍 → ( 𝑐 ·s 𝑓 ) = ( 𝑍 ·s 𝑓 ) )
36 oveq1 ( 𝑐 = 𝑍 → ( 𝑐 ·s 𝑒 ) = ( 𝑍 ·s 𝑒 ) )
37 35 36 oveq12d ( 𝑐 = 𝑍 → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) = ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) )
38 37 breq1d ( 𝑐 = 𝑍 → ( ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ↔ ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) )
39 34 38 imbi12d ( 𝑐 = 𝑍 → ( ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ↔ ( ( 𝑍 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) )
40 39 anbi2d ( 𝑐 = 𝑍 → ( ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) )
41 32 40 imbi12d ( 𝑐 = 𝑍 → ( ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ) )
42 fveq2 ( 𝑑 = 𝑊 → ( bday 𝑑 ) = ( bday 𝑊 ) )
43 42 oveq1d ( 𝑑 = 𝑊 → ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) = ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) )
44 43 uneq2d ( 𝑑 = 𝑊 → ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) = ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) )
45 42 oveq1d ( 𝑑 = 𝑊 → ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) = ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) )
46 45 uneq2d ( 𝑑 = 𝑊 → ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) = ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) )
47 44 46 uneq12d ( 𝑑 = 𝑊 → ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) = ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) ) )
48 47 uneq2d ( 𝑑 = 𝑊 → ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) ) ) )
49 48 eleq1d ( 𝑑 = 𝑊 → ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ↔ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ) )
50 breq2 ( 𝑑 = 𝑊 → ( 𝑍 <s 𝑑𝑍 <s 𝑊 ) )
51 50 anbi1d ( 𝑑 = 𝑊 → ( ( 𝑍 <s 𝑑𝑒 <s 𝑓 ) ↔ ( 𝑍 <s 𝑊𝑒 <s 𝑓 ) ) )
52 oveq1 ( 𝑑 = 𝑊 → ( 𝑑 ·s 𝑓 ) = ( 𝑊 ·s 𝑓 ) )
53 oveq1 ( 𝑑 = 𝑊 → ( 𝑑 ·s 𝑒 ) = ( 𝑊 ·s 𝑒 ) )
54 52 53 oveq12d ( 𝑑 = 𝑊 → ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) = ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) )
55 54 breq2d ( 𝑑 = 𝑊 → ( ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ↔ ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) ) )
56 51 55 imbi12d ( 𝑑 = 𝑊 → ( ( ( 𝑍 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ↔ ( ( 𝑍 <s 𝑊𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) ) ) )
57 56 anbi2d ( 𝑑 = 𝑊 → ( ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) ) ) ) )
58 49 57 imbi12d ( 𝑑 = 𝑊 → ( ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) ↔ ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) ) ) ) ) )
59 fveq2 ( 𝑒 = 𝑇 → ( bday 𝑒 ) = ( bday 𝑇 ) )
60 59 oveq2d ( 𝑒 = 𝑇 → ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) = ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) )
61 60 uneq1d ( 𝑒 = 𝑇 → ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) = ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) )
62 59 oveq2d ( 𝑒 = 𝑇 → ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) = ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) )
63 62 uneq2d ( 𝑒 = 𝑇 → ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) = ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) )
64 61 63 uneq12d ( 𝑒 = 𝑇 → ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) ) = ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) )
65 64 uneq2d ( 𝑒 = 𝑇 → ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) )
66 65 eleq1d ( 𝑒 = 𝑇 → ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ↔ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ) )
67 breq1 ( 𝑒 = 𝑇 → ( 𝑒 <s 𝑓𝑇 <s 𝑓 ) )
68 67 anbi2d ( 𝑒 = 𝑇 → ( ( 𝑍 <s 𝑊𝑒 <s 𝑓 ) ↔ ( 𝑍 <s 𝑊𝑇 <s 𝑓 ) ) )
69 oveq2 ( 𝑒 = 𝑇 → ( 𝑍 ·s 𝑒 ) = ( 𝑍 ·s 𝑇 ) )
70 69 oveq2d ( 𝑒 = 𝑇 → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) = ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) )
71 oveq2 ( 𝑒 = 𝑇 → ( 𝑊 ·s 𝑒 ) = ( 𝑊 ·s 𝑇 ) )
72 71 oveq2d ( 𝑒 = 𝑇 → ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) = ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) )
73 70 72 breq12d ( 𝑒 = 𝑇 → ( ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) ↔ ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) ) )
74 68 73 imbi12d ( 𝑒 = 𝑇 → ( ( ( 𝑍 <s 𝑊𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) ) ↔ ( ( 𝑍 <s 𝑊𝑇 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) )
75 74 anbi2d ( 𝑒 = 𝑇 → ( ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) ) ) ↔ ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) ) )
76 66 75 imbi12d ( 𝑒 = 𝑇 → ( ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑒 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑒 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑒 ) ) ) ) ) ↔ ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) ) ) )
77 fveq2 ( 𝑓 = 𝑈 → ( bday 𝑓 ) = ( bday 𝑈 ) )
78 77 oveq2d ( 𝑓 = 𝑈 → ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) = ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) )
79 78 uneq2d ( 𝑓 = 𝑈 → ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) = ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) )
80 77 oveq2d ( 𝑓 = 𝑈 → ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) = ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) )
81 80 uneq1d ( 𝑓 = 𝑈 → ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) = ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) )
82 79 81 uneq12d ( 𝑓 = 𝑈 → ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) = ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) )
83 82 uneq2d ( 𝑓 = 𝑈 → ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) = ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) )
84 83 eleq1d ( 𝑓 = 𝑈 → ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ↔ ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) ) )
85 breq2 ( 𝑓 = 𝑈 → ( 𝑇 <s 𝑓𝑇 <s 𝑈 ) )
86 85 anbi2d ( 𝑓 = 𝑈 → ( ( 𝑍 <s 𝑊𝑇 <s 𝑓 ) ↔ ( 𝑍 <s 𝑊𝑇 <s 𝑈 ) ) )
87 oveq2 ( 𝑓 = 𝑈 → ( 𝑍 ·s 𝑓 ) = ( 𝑍 ·s 𝑈 ) )
88 87 oveq1d ( 𝑓 = 𝑈 → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) = ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) )
89 oveq2 ( 𝑓 = 𝑈 → ( 𝑊 ·s 𝑓 ) = ( 𝑊 ·s 𝑈 ) )
90 89 oveq1d ( 𝑓 = 𝑈 → ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) = ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) )
91 88 90 breq12d ( 𝑓 = 𝑈 → ( ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) ↔ ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) ) )
92 86 91 imbi12d ( 𝑓 = 𝑈 → ( ( ( 𝑍 <s 𝑊𝑇 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) ) ↔ ( ( 𝑍 <s 𝑊𝑇 <s 𝑈 ) → ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) )
93 92 anbi2d ( 𝑓 = 𝑈 → ( ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) ↔ ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑈 ) → ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) ) )
94 84 93 imbi12d ( 𝑓 = 𝑈 → ( ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑓 ) → ( ( 𝑍 ·s 𝑓 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑓 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) ) ↔ ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑈 ) → ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) ) ) )
95 16 24 41 58 76 94 rspc6v ( ( ( 𝑋 No 𝑌 No ) ∧ ( 𝑍 No 𝑊 No ) ∧ ( 𝑇 No 𝑈 No ) ) → ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) → ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑈 ) → ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) ) ) )
96 2 3 4 5 6 7 95 syl222anc ( 𝜑 → ( ∀ 𝑎 No 𝑏 No 𝑐 No 𝑑 No 𝑒 No 𝑓 No ( ( ( ( bday 𝑎 ) +no ( bday 𝑏 ) ) ∪ ( ( ( ( bday 𝑐 ) +no ( bday 𝑒 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑓 ) ) ) ∪ ( ( ( bday 𝑐 ) +no ( bday 𝑓 ) ) ∪ ( ( bday 𝑑 ) +no ( bday 𝑒 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑎 ·s 𝑏 ) ∈ No ∧ ( ( 𝑐 <s 𝑑𝑒 <s 𝑓 ) → ( ( 𝑐 ·s 𝑓 ) -s ( 𝑐 ·s 𝑒 ) ) <s ( ( 𝑑 ·s 𝑓 ) -s ( 𝑑 ·s 𝑒 ) ) ) ) ) → ( ( ( ( bday 𝑋 ) +no ( bday 𝑌 ) ) ∪ ( ( ( ( bday 𝑍 ) +no ( bday 𝑇 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑈 ) ) ) ∪ ( ( ( bday 𝑍 ) +no ( bday 𝑈 ) ) ∪ ( ( bday 𝑊 ) +no ( bday 𝑇 ) ) ) ) ) ∈ ( ( ( bday 𝐴 ) +no ( bday 𝐵 ) ) ∪ ( ( ( ( bday 𝐶 ) +no ( bday 𝐸 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐹 ) ) ) ∪ ( ( ( bday 𝐶 ) +no ( bday 𝐹 ) ) ∪ ( ( bday 𝐷 ) +no ( bday 𝐸 ) ) ) ) ) → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑈 ) → ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) ) ) )
97 1 8 96 mp2d ( 𝜑 → ( ( 𝑋 ·s 𝑌 ) ∈ No ∧ ( ( 𝑍 <s 𝑊𝑇 <s 𝑈 ) → ( ( 𝑍 ·s 𝑈 ) -s ( 𝑍 ·s 𝑇 ) ) <s ( ( 𝑊 ·s 𝑈 ) -s ( 𝑊 ·s 𝑇 ) ) ) ) )